Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants.

Heyer R, Schallert K, Siewert C, Kohrs F, Greve J, Maus I, Klang J, Klocke M, Heiermann M, Hoffmann M, Puttker S, et al. (2019)
Microbiome 7(1): 69.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heyer, R; Schallert, K; Siewert, C; Kohrs, F; Greve, J; Maus, IrenaUniBi; Klang, J; Klocke, M; Heiermann, M; Hoffmann, M; Puttker, S; Calusinska, M
Alle
Abstract / Bemerkung
BACKGROUND: In biogas plants, complex microbial communities produce methane and carbon dioxide by anaerobic digestion of biomass. For the characterization of the microbial functional networks, samples of 11 reactors were analyzed using a high-resolution metaproteomics pipeline.; RESULTS: Examined methanogenesis archaeal communities were either mixotrophic or strictly hydrogenotrophic in syntrophy with bacterial acetate oxidizers. Mapping of identified metaproteins with process steps described by the Anaerobic Digestion Model 1 confirmed its main assumptions and also proposed some extensions such as syntrophic acetate oxidation or fermentation of alcohols. Results indicate that the microbial communities were shaped by syntrophy as well as competition and phage-host interactions causing cell lysis. For the families Bacillaceae, Enterobacteriaceae, and Clostridiaceae, the number of phages exceeded up to 20-fold the number of host cells.; CONCLUSION: Phage-induced cell lysis might slow down the conversion of substrates to biogas, though, it could support the growth of auxotrophic microbes by cycling of nutrients.
Erscheinungsjahr
2019
Zeitschriftentitel
Microbiome
Band
7
Ausgabe
1
Art.-Nr.
69
ISSN
2049-2618
Page URI
https://pub.uni-bielefeld.de/record/2935489

Zitieren

Heyer R, Schallert K, Siewert C, et al. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome. 2019;7(1): 69.
Heyer, R., Schallert, K., Siewert, C., Kohrs, F., Greve, J., Maus, I., Klang, J., et al. (2019). Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome, 7(1), 69. doi:10.1186/s40168-019-0673-y
Heyer, R, Schallert, K, Siewert, C, Kohrs, F, Greve, J, Maus, Irena, Klang, J, et al. 2019. “Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants.”. Microbiome 7 (1): 69.
Heyer, R., Schallert, K., Siewert, C., Kohrs, F., Greve, J., Maus, I., Klang, J., Klocke, M., Heiermann, M., Hoffmann, M., et al. (2019). Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome 7:69.
Heyer, R., et al., 2019. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome, 7(1): 69.
R. Heyer, et al., “Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants.”, Microbiome, vol. 7, 2019, : 69.
Heyer, R., Schallert, K., Siewert, C., Kohrs, F., Greve, J., Maus, I., Klang, J., Klocke, M., Heiermann, M., Hoffmann, M., Puttker, S., Calusinska, M., Zoun, R., Saake, G., Benndorf, D., Reichl, U.: Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome. 7, : 69 (2019).
Heyer, R, Schallert, K, Siewert, C, Kohrs, F, Greve, J, Maus, Irena, Klang, J, Klocke, M, Heiermann, M, Hoffmann, M, Puttker, S, Calusinska, M, Zoun, R, Saake, G, Benndorf, D, and Reichl, U. “Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants.”. Microbiome 7.1 (2019): 69.

70 References

Daten bereitgestellt von Europe PubMed Central.

Biomethanation and its potential.
Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJ., Meth. Enzymol. 494(), 2011
PMID: 21402222
Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2009
PMID: 19777226
Energetics of syntrophic cooperation in methanogenic degradation.
Schink B., Microbiol. Mol. Biol. Rev. 61(2), 1997
PMID: 9184013
Methanogenic archaea: ecologically relevant differences in energy conservation.
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R., Nat. Rev. Microbiol. 6(8), 2008
PMID: 18587410
The IWA Anaerobic Digestion Model No 1 (ADM1).
Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA., Water Sci. Technol. 45(10), 2002
PMID: 12188579
Diagnostic concept for dynamically operated biogas production plants
Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Kausmann R, Plochl M, Heiermann M, Reichl U, Sundmacher K., 2016
Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations
Lauwers J, Appels L, Thompson IP, Degreve J, Van JE, Dewil R., 2013
Syntrophic acetate-oxidizing microbes in methanogenic environments.
Hattori S., Microbes Environ. 23(2), 2008
PMID: 21558697
Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance
Westerholm M, Moestedt J, Schnurer A., 2016
Methanosarcina: the rediscovered methanogen for heavy duty biomethanation.
De Vrieze J, Hennebel T, Boon N, Verstraete W., Bioresour. Technol. 112(), 2012
PMID: 22418081
Bacteriocins of gram-positive bacteria.
Jack RW, Tagg JR, Ray B., Microbiol. Rev. 59(2), 1995
PMID: 7603408
Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity.
Calusinska M, Marynowska M, Goux X, Lentzen E, Delfosse P., Environ. Microbiol. 18(4), 2016
PMID: 26568175

AUTHOR UNKNOWN, 0
CRISPR-Cas9 Structures and Mechanisms.
Jiang F, Doudna JA., Annu Rev Biophys 46(), 2017
PMID: 28375731
Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass.
Klocke M, Nettmann E, Bergmann I, Mundt K, Souidi K, Mumme J, Linke B., Syst. Appl. Microbiol. 31(3), 2008
PMID: 18501543

AUTHOR UNKNOWN, 0
Methanogenic Community Dynamics during Anaerobic Utilization of Agricultural Wastes
Ziganshin AM, Ziganshina EE, Kleinsteuber S, Proter J, Ilinskaya ON., 2012
A metabolic quotient for methanogenic Archaea.
Munk B, Bauer C, Gronauer A, Lebuhn M., Water Sci. Technol. 66(11), 2012
PMID: 23032759
Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing.
Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, Klocke M., FEMS Microbiol. Ecol. 79(3), 2011
PMID: 22126587

AUTHOR UNKNOWN, 0
Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation.
Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, Klocke M., Syst. Appl. Microbiol. 36(5), 2013
PMID: 23694815
Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Puhler A, Sczyrba A, Schluter A., Biotechnol Biofuels 9(), 2016
PMID: 27462367
Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates.
Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke M., Biotechnol Biofuels 9(), 2016
PMID: 27525040
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600

AUTHOR UNKNOWN, 0
Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass.
Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M., Can. J. Microbiol. 58(7), 2012
PMID: 22690648
Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type.
Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M, Rapp E, Schluter A, Sczyrba A, Reichl U., Biotechnol Biofuels 9(), 2016
PMID: 27462366
Metaproteomics of complex microbial communities in biogas plants.
Heyer R, Kohrs F, Reichl U, Benndorf D., Microb Biotechnol 8(5), 2015
PMID: 25874383
The MetaProteomeAnalyzer: a powerful open-source software suite for metaproteomics data analysis and interpretation.
Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M, Lehteva M, Reichl U, Martens L, Rapp E., J. Proteome Res. 14(3), 2015
PMID: 25660940
Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity.
Lu F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, Mazeas L, He P, Bouchez T., ISME J 8(1), 2013
PMID: 23949661
UniRef: comprehensive and non-redundant UniProt reference clusters.
Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH., Bioinformatics 23(10), 2007
PMID: 17379688
The NCBI Taxonomy database.
Federhen S., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22139910
Glycine metabolism in anaerobes.
Andreesen JR., Antonie Van Leeuwenhoek 66(1-3), 1994
PMID: 7747933
Homomultimeric protease and putative bacteriocin homolog from Thermotoga maritima.
Hicks PM, Chang LS, Kelly RM., Meth. Enzymol. 330(), 2001
PMID: 11210524
Challenges and perspectives of metaproteomic data analysis.
Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D., J. Biotechnol. 261(), 2017
PMID: 28663049
Bioinformatics for NGS-based metagenomics and the application to biogas research.
Junemann S, Kleinbolting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albaum SP, Schluter A, Goesmann A, Sczyrba A, Stoye J., J. Biotechnol. 261(), 2017
PMID: 28823476
Sample prefractionation with liquid isoelectric focusing enables in depth microbial metaproteome analysis of mesophilic and thermophilic biogas plants.
Kohrs F, Heyer R, Magnussen A, Benndorf D, Muth T, Behne A, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U., Anaerobe 29(), 2013
PMID: 24309213
Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates.
Allison SD, Lu L, Kent AG, Martiny AC., Front Microbiol 5(), 2014
PMID: 24782855
Marine viruses--major players in the global ecosystem.
Suttle CA., Nat. Rev. Microbiol. 5(10), 2007
PMID: 17853907
Assessing species biomass contributions in microbial communities via metaproteomics.
Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C, Strous M., Nat Commun 8(1), 2017
PMID: 29146960
Phages in nature.
Clokie MR, Millard AD, Letarov AV, Heaphy S., Bacteriophage 1(1), 2011
PMID: 21687533

AUTHOR UNKNOWN, 0
Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities.
Romine MF, Rodionov DA, Maezato Y, Osterman AL, Nelson WC., ISME J 11(6), 2017
PMID: 28186498
Enumeration studies on methanogenic bacteria
Siebert ML, Toerien DF, Hattingh WHJ., 1968
Illuminating structural proteins in viral "dark matter" with metaproteomics.
Brum JR, Ignacio-Espinoza JC, Kim EH, Trubl G, Jones RM, Roux S, VerBerkmoes NC, Rich VI, Sullivan MB., Proc. Natl. Acad. Sci. U.S.A. 113(9), 2016
PMID: 26884177
In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry.
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ., Environ. Microbiol. 16(8), 2014
PMID: 24571640
Protein-SIP in environmental studies.
Jehmlich N, Vogt C, Lunsmann V, Richnow HH, von Bergen M., Curr. Opin. Biotechnol. 41(), 2016
PMID: 27116035
Metaproteome analysis of the microbial communities in agricultural biogas plants.
Heyer R, Kohrs F, Benndorf D, Rapp E, Kausmann R, Heiermann M, Klocke M, Reichl U., N Biotechnol 30(6), 2013
PMID: 23369865
Eine Störungsfreie Mikromethode zur Bestimmung des Proteingehaltes in Gewebehomogenaten
Popov N, Schmitt M, Schulzeck S, Matthies H., 1975
Stoichiometry of the amido black reaction with proteins.
Racusen D., Anal. Biochem. 52(1), 1973
PMID: 4121309
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443
Open mass spectrometry search algorithm.
Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH., J. Proteome Res. 3(5), 2004
PMID: 15473683
TANDEM: matching proteins with tandem mass spectra.
Craig R, Beavis RC., Bioinformatics 20(9), 2004
PMID: 14976030
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations.
Elias JE, Haas W, Faherty BK, Gygi SP., Nat. Methods 2(9), 2005
PMID: 16118637
UniProt: a hub for protein information.
UniProt Consortium, Bateman A, Martin MJ, O'Donovan C, Magrane M, Apweiler R, Alpi E, Antunes R, Arganiska J, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Chavali G, Cibrian-Uhalte E, Silva AD, De Giorgi M, Dogan T, Fazzini F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu W, Luo J, MacDougall A, Mutowo P, Nightingale A, Orchard S, Pichler K, Poggioli D, Pundir S, Pureza L, Qi G, Rosanoff S, Saidi R, Sawford T, Shypitsyna A, Turner E, Volynkin V, Wardell T, Watkins X, Zellner H, Cowley A, Figueira L, Li W, McWilliam H, Lopez R, Xenarios I, Bougueleret L, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Boeckmann B, Bolleman J, Boutet E, Breuza L, Casal-Casas C, de Castro E, Coudert E, Cuche B, Doche M, Dornevil D, Duvaud S, Estreicher A, Famiglietti L, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Jungo F, Keller G, Lara V, Lemercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto T, Nouspikel N, Paesano S, Pedruzzi I, Pilbout S, Pozzato M, Pruess M, Rivoire C, Roechert B, Schneider M, Sigrist C, Sonesson K, Staehli S, Stutz A, Sundaram S, Tognolli M, Verbregue L, Veuthey AL, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Garavelli JS, Huang H, Laiho K, McGarvey P, Natale DA, Suzek BE, Vinayaka C, Wang Q, Wang Y, Yeh LS, Yerramalla MS, Zhang J., Nucleic Acids Res. 43(Database issue), 2014
PMID: 25348405
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
2016 update of the PRIDE database and its related tools.
Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H., Nucleic Acids Res. 44(22), 2016
PMID: 27683222
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
UniProtJAPI: a remote API for accessing UniProt data.
Patient S, Wieser D, Kleen M, Kretschmann E, Jesus Martin M, Apweiler R., Bioinformatics 24(10), 2008
PMID: 18390879

AUTHOR UNKNOWN, 0
Interactive metagenomic visualization in a Web browser.
Ondov BD, Bergman NH, Phillippy AM., BMC Bioinformatics 12(), 2011
PMID: 21961884
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31029164
PubMed | Europe PMC

Suchen in

Google Scholar