Image statistics of the environment surrounding freely behaving hoverflies.

Dyakova O, Müller M, Egelhaaf M, Nordstrom K (2019)
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 205(3): 373-385.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
OA 4.16 MB
Autor*in
Dyakova, Olga; Müller, MartinUniBi ; Egelhaaf, MartinUniBi ; Nordstrom, Karin
Abstract / Bemerkung
Natural scenes are not as random as they might appear, but are constrained in both space and time. The 2-dimensional spatial constraints can be described by quantifying the image statistics of photographs. Human observers perceive images with naturalistic image statistics as more pleasant to view, and both fly and vertebrate peripheral and higher order visual neurons are tuned to naturalistic image statistics. However, for a given animal, what is natural differs depending on the behavior, and even if we have a broad understanding of image statistics, we know less about the scenes relevant for particular behaviors. To mitigate this, wehere investigate the image statistics surrounding Episyrphus balteatus hoverflies, where the males hover in sun shafts created by surrounding trees, producing a rich and dense background texture and also intricate shadow patterns on the ground. We quantified the image statistics of photographs of the ground and the surrounding panorama, as the ventral and lateral visual field is particularly important for visual flight control, and found differences in spatial statistics in photos where the hoverflies were hovering compared to where they were flying. Our results can, in the future, be used to create more naturalistic stimuli for experimenter-controlled experiments in the laboratory.
Erscheinungsjahr
2019
Zeitschriftentitel
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
Band
205
Ausgabe
3
Seite(n)
373-385
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/2934792

Zitieren

Dyakova O, Müller M, Egelhaaf M, Nordstrom K. Image statistics of the environment surrounding freely behaving hoverflies. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 2019;205(3):373-385.
Dyakova, O., Müller, M., Egelhaaf, M., & Nordstrom, K. (2019). Image statistics of the environment surrounding freely behaving hoverflies. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 205(3), 373-385. doi:10.1007/s00359-019-01329-1
Dyakova, O., Müller, M., Egelhaaf, M., and Nordstrom, K. (2019). Image statistics of the environment surrounding freely behaving hoverflies. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 205, 373-385.
Dyakova, O., et al., 2019. Image statistics of the environment surrounding freely behaving hoverflies. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 205(3), p 373-385.
O. Dyakova, et al., “Image statistics of the environment surrounding freely behaving hoverflies.”, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, vol. 205, 2019, pp. 373-385.
Dyakova, O., Müller, M., Egelhaaf, M., Nordstrom, K.: Image statistics of the environment surrounding freely behaving hoverflies. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 205, 373-385 (2019).
Dyakova, Olga, Müller, Martin, Egelhaaf, Martin, and Nordstrom, Karin. “Image statistics of the environment surrounding freely behaving hoverflies.”. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 205.3 (2019): 373-385.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-11-20T13:40:19Z
MD5 Prüfsumme
606e1ab4e3370df9e308dd4cfaab85f0

54 References

Daten bereitgestellt von Europe PubMed Central.

Novel flicker-sensitive visual circuit neurons inhibited by stationary patterns.
de Haan R, Lee YJ, Nordstrom K., J. Neurosci. 33(21), 2013
PMID: 23699509
Image statistics and their processing in insect vision.
Dyakova O, Nordstrom K., Curr Opin Insect Sci 24(), 2017
PMID: 29208226
A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes.
Dyakova O, Lee YJ, Longden KD, Kiselev VG, Nordstrom K., Nat Commun 6(), 2015
PMID: 26439748
Acute sleep loss induces signs of visual discomfort in young men.
Dyakova O, Rangtell FH, Tan X, Nordstrom K, Benedict C., J Sleep Res (), 2019
PMID: 30815934
Nonlinear circuits for naturalistic visual motion estimation.
Fitzgerald JE, Clark DA., Elife 4(), 2015
PMID: 26499494
Local luminance and contrast in natural images.
Frazor RA, Geisler WS., Vision Res. 46(10), 2006
PMID: 16403546
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (Episyrphus balteatus).
Goulard R, Julien-Laferriere A, Fleuriet J, Vercher JL, Viollet S., J. Exp. Biol. 218(Pt 23), 2015
PMID: 26486370
To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?
Goulard R, Vercher JL, Viollet S., J. Exp. Biol. 219(Pt 16), 2016
PMID: 27535987
Fly photoreceptors. II. Spectral and polarized light sensitivity in the drone fly Eristalis.
Horridge GA, Mimura K, Tsukahara Y., Proc. R. Soc. Lond., B, Biol. Sci. 190(1099), 1975
PMID: 238210
Bayesian surprise attracts human attention.
Itti L, Baldi P., Vision Res. 49(10), 2008
PMID: 18834898
How a fly photoreceptor samples light information in time.
Juusola M, Song Z., J. Physiol. (Lond.) 595(16), 2017
PMID: 28233315
A simple coding procedure enhances a neuron's information capacity.
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation.
Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A., Nat. Neurosci. 19(5), 2016
PMID: 26928063
How bumblebees use lateral and ventral optic flow cues for position control in environments of different proximity.
Linander N, Baird E, Dacke M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 203(5), 2017
PMID: 28429124
The role of spatial texture in visual control of bumblebee learning flights.
Linander N, Dacke M, Baird E, Hempel de Ibarra N., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 204(8), 2018
PMID: 29980840
Provisioning floral resources to attract aphidophagous hoverflies (Diptera: Syrphidae) useful for pest management in central Spain.
Martinez-Una A, Martin JM, Fernandez-Quintanilla C, Dorado J., J. Econ. Entomol. 106(6), 2013
PMID: 24498730
Predicting the human reaction time based on natural image statistics in a rapid categorization task.
Mirzaei A, Khaligh-Razavi SM, Ghodrati M, Zabbah S, Ebrahimpour R., Vision Res. 81(), 2013
PMID: 23419619
The problem of home choice in skyline-based homing.
Muller MM, Bertrand OJN, Differt D, Egelhaaf M., PLoS ONE 13(3), 2018
PMID: 29522546
Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
Nicholas S, Supple J, Leibbrandt R, Gonzalez-Bellido PT, Nordstrom K., J. Neurosci. 38(50), 2018
PMID: 30373766
Feature detection and the hypercomplex property in insects.
Nordstrom K, O'Carroll DC., Trends Neurosci. 32(7), 2009
PMID: 19541374
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordstrom K., Front Neural Circuits 6(), 2012
PMID: 23087617
Visual discomfort and blur.
O'Hare L, Hibbard PB., J Vis 13(5), 2013
PMID: 23576113
The human visual system is optimised for processing the spatial information in natural visual images.
Parraga CA, Troscianko T, Tolhurst DJ., Curr. Biol. 10(1), 2000
PMID: 10660301
Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.
Portelli G, Ruffier F, Roubieu FL, Franceschini N., PLoS ONE 6(5), 2011
PMID: 21589861
A syrphid fly uses olfactory cues to find a non-yellow flower.
Primante C, Dotterl S., J. Chem. Ecol. 36(11), 2010
PMID: 20924654
Natural scene statistics at the centre of gaze.
Reinagel P, Zador AM., Network 10(4), 1999
PMID: 10695763
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordstrom K, O'Carroll DC., Curr. Biol. 20(11), 2010
PMID: 20537540
Where to look next? Eye movements reduce local uncertainty.
Renninger LW, Verghese P, Coughlan J., J Vis 7(3), 2007
PMID: 17461684
Statistics of natural images: Scaling in the woods.
Ruderman DL, Bialek W., Phys. Rev. Lett. 73(6), 1994
PMID: 10057546
Logistic regression.
Sainani KL., PM R 6(12), 2014
PMID: 25463689
Natural image statistics and neural representation.
Simoncelli EP, Olshausen BA., Annu. Rev. Neurosci. 24(), 2001
PMID: 11520932
Spatial frequency, phase, and the contrast of natural images.
Bex PJ, Makous W., J Opt Soc Am A Opt Image Sci Vis 19(6), 2002
PMID: 12049346
Contrast sensitivity of insect motion detectors to natural images.
Straw AD, Rainsford T, O'Carroll DC., J Vis 8(3), 2008
PMID: 18484838
Visual control of altitude in flying Drosophila.
Straw AD, Lee S, Dickinson MH., Curr. Biol. 20(17), 2010
PMID: 20727759
Visual approach computation in feeding hoverflies.
Thyselius M, Gonzalez-Bellido PT, Wardill TJ, Nordstrom K., J. Exp. Biol. 221(Pt 10), 2018
PMID: 29720383
Amplitude spectra of natural images.
Tolhurst DJ, Tadmor Y, Chao T., Ophthalmic Physiol Opt 12(2), 1992
PMID: 1408179
Statistics of natural image categories.
Torralba A, Oliva A., Network 14(3), 2003
PMID: 12938764
Spatiotemporal contrast sensitivity of early vision.
Van Hateren JH., Vision Res. 33(2), 1993
PMID: 8447098
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763
Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly.
Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E., J. Chem. Ecol. 34(3), 2008
PMID: 18253796

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30937518
PubMed | Europe PMC

Suchen in

Google Scholar