Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery

Borbély AN, Figueras Agustí E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, et al. (2019)
Pharmaceutics 11(4): 151.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 639.76 KB
Borbély, Adina NoémiUniBi; Figueras Agustí, EduardUniBi; Martins, Ana; Esposito, Simone; Auciello, Giulio; Monteagudo, Edith; Di Marco, Annalise; Summa, Vincenzo; Cordella, Paola; Perego, Raffaella; Kemker, IsabellUniBi; Frese, MarcelUniBi
Abstract / Bemerkung
Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvβ3, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)–cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvβ3 expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscopy
antitumor agents; small molecule–drug conjugates; drug delivery; RGD peptides
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Borbély AN, Figueras Agustí E, Martins A, et al. Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics. 2019;11(4): 151.
Borbély, A. N., Figueras Agustí, E., Martins, A., Esposito, S., Auciello, G., Monteagudo, E., Di Marco, A., et al. (2019). Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics, 11(4), 151.
Borbély, Adina Noémi, Figueras Agustí, Eduard, Martins, Ana, Esposito, Simone, Auciello, Giulio, Monteagudo, Edith, Di Marco, Annalise, et al. 2019. “Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery”. Pharmaceutics 11 (4): 151.
Borbély, A. N., Figueras Agustí, E., Martins, A., Esposito, S., Auciello, G., Monteagudo, E., Di Marco, A., Summa, V., Cordella, P., Perego, R., et al. (2019). Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics 11:151.
Borbély, A.N., et al., 2019. Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics, 11(4): 151.
A.N. Borbély, et al., “Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery”, Pharmaceutics, vol. 11, 2019, : 151.
Borbély, A.N., Figueras Agustí, E., Martins, A., Esposito, S., Auciello, G., Monteagudo, E., Di Marco, A., Summa, V., Cordella, P., Perego, R., Kemker, I., Frese, M., Gallinari, P., Steinkühler, C., Sewald, N.: Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics. 11, : 151 (2019).
Borbély, Adina Noémi, Figueras Agustí, Eduard, Martins, Ana, Esposito, Simone, Auciello, Giulio, Monteagudo, Edith, Di Marco, Annalise, Summa, Vincenzo, Cordella, Paola, Perego, Raffaella, Kemker, Isabell, Frese, Marcel, Gallinari, Paola, Steinkühler, Christian, and Sewald, Norbert. “Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery”. Pharmaceutics 11.4 (2019): 151.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Unported (CC BY-NC-ND 3.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Octreotide Conjugates for Tumor Targeting and Imaging.
Figueras E, Martins A, Borbély A, Le Joncour V, Cordella P, Perego R, Modena D, Pagani P, Esposito S, Auciello G, Frese M, Gallinari P, Laakkonen P, Steinkühler C, Sewald N., Pharmaceutics 11(5), 2019
PMID: 31067748

53 References

Daten bereitgestellt von Europe PubMed Central.

Antibody-drug conjugates: an emerging concept in cancer therapy.
Chari RV, Miller ML, Widdison WC., Angew. Chem. Int. Ed. Engl. 53(15), 2014
PMID: 24677743
Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1.
Panda D, Himes RH, Moore RE, Wilson L, Jordan MA., Biochemistry 36(42), 1997
PMID: 9335554
Cryptophycin: a new antimicrotubule agent active against drug-resistant cells.
Smith CD, Zhang X, Mooberry SL, Patterson GM, Moore RE., Cancer Res. 54(14), 1994
PMID: 7913408
Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer.
Edelman MJ, Gandara DR, Hausner P, Israel V, Thornton D, DeSanto J, Doyle LA., Lung Cancer 39(2), 2003
PMID: 12581573
A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer.
D'Agostino G, del Campo J, Mellado B, Izquierdo MA, Minarik T, Cirri L, Marini L, Perez-Gracia JL, Scambia G., Int. J. Gynecol. Cancer 16(1), 2006
PMID: 16445613
Approaches for the synthesis of functionalized cryptophycins.
Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N., J. Org. Chem. 75(20), 2010
PMID: 20857920
Recent approaches for the synthesis of modified cryptophycins.
Weiss C, Sammet B, Sewald N., Nat Prod Rep 30(7), 2013
PMID: 23732943
Novel unit B cryptophycin analogues as payloads for targeted therapy.
Figueras E, Borbely A, Ismail M, Frese M, Sewald N., Beilstein J Org Chem 14(), 2018
PMID: 29977395
Conjugates of modified cryptophycins and RGD-peptides enter target cells by endocytosis.
Nahrwold M, Weiß C, Bogner T, Mertink F, Conradi J, Sammet B, Palmisano R, Royo Gracia S, Preuße T, Sewald N., J. Med. Chem. 56(5), 2013
PMID: 23387527
Principles in the design of ligand-targeted cancer therapeutics and imaging agents.
Srinivasarao M, Galliford CV, Low PS., Nat Rev Drug Discov 14(3), 2015
PMID: 25698644
The cryptophycins as potent payloads for antibody drug conjugates.
Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, Raab HE, Spencer S, Zheng B., Bioorg. Med. Chem. Lett. 25(4), 2015
PMID: 25613677
Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting.
Weiss C, Figueras E, Borbely AN, Sewald N., J. Pept. Sci. 23(7-8), 2017
PMID: 28661555
Cryptophycins-309, 249 and other cryptophycin analogs: preclinical efficacy studies with mouse and human tumors.
Liang J, Moore RE, Moher ED, Munroe JE, Al-awar RS, Hay DA, Varie DL, Zhang TY, Aikins JA, Martinelli MJ, Shih C, Ray JE, Gibson LL, Vasudevan V, Polin L, White K, Kushner J, Simpson C, Pugh S, Corbett TH., Invest New Drugs 23(3), 2005
PMID: 15868377
In Vivo Antitumor Activity of a Novel Acetazolamide-Cryptophycin Conjugate for the Treatment of Renal Cell Carcinomas.
Cazzamalli S, Figueras E, Petho L, Borbely A, Steinkuhler C, Neri D, Sewald N., ACS Omega 3(11), 2018
PMID: 30533574
Every step of the way: integrins in cancer progression and metastasis.
Hamidi H, Ivaska J., Nat. Rev. Cancer 18(9), 2018
PMID: 30002479
Integrins in cancer: biological implications and therapeutic opportunities.
Desgrosellier JS, Cheresh DA., Nat. Rev. Cancer 10(1), 2010
PMID: 20029421
RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis.
Danhier F, Le Breton A, Preat V., Mol. Pharm. 9(11), 2012
PMID: 22967287
Exploring the Role of RGD-Recognizing Integrins in Cancer.
Nieberler M, Reuning U, Reichart F, Notni J, Wester HJ, Schwaiger M, Weinmuller M, Rader A, Steiger K, Kessler H., Cancers (Basel) 9(9), 2017
PMID: 28869579
New perspectives in cell adhesion: RGD and integrins.
Ruoslahti E, Pierschbacher MD., Science 238(4826), 1987
PMID: 2821619
Cyclic RGD-peptidomimetics containing bifunctional diketopiperazine scaffolds as new potent integrin ligands.
da Ressurreicao AS, Vidu A, Civera M, Belvisi L, Potenza D, Manzoni L, Ongeri S, Gennari C, Piarulli U., Chemistry 15(45), 2009
PMID: 19830748
The constrained amino acid beta-Acc confers potency and selectivity to integrin ligands.
Urman S, Gaus K, Yang Y, Strijowski U, Sewald N, De Pol S, Reiser O., Angew. Chem. Int. Ed. Engl. 46(21), 2007
PMID: 17394270
A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins.
Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, Reuning U, Notni J, Wester HJ, Mas-Moruno C, Spatz J, Geiger B, Kessler H., Sci Rep 7(), 2017
PMID: 28074920
Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial.
Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam DH, Hau P, Weyerbrock A, Taphoorn MJ, Shen CC, Rao N, Thurzo L, Herrlinger U, Gupta T, Kortmann RD, Adamska K, McBain C, Brandes AA, Tonn JC, Schnell O, Wiegel T, Kim CY, Nabors LB, Reardon DA, van den Bent MJ, Hicking C, Markivskyy A, Picard M, Weller M; European Organisation for Research and Treatment of Cancer (EORTC); Canadian Brain Tumor Consortium; CENTRIC study team., Lancet Oncol. 15(10), 2014
PMID: 25163906
Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin αvβ3.
Chen H, Niu G, Wu H, Chen X., Theranostics 6(1), 2016
PMID: 26722375
αvβ3 Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates: In-Depth Analysis of the Linker Technology.
Dal Corso A, Pignataro L, Belvisi L, Gennari C., Curr Top Med Chem 16(3), 2016
PMID: 26126915
RGD-mediated delivery of small-molecule drugs.
Katsamakas S, Chatzisideri T, Thysiadis S, Sarli V., Future Med Chem 9(6), 2017
PMID: 28394627
Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries.
Krall N, Scheuermann J, Neri D., Angew. Chem. Int. Ed. Engl. 52(5), 2013
PMID: 23296451
Cancer-targeted delivery systems based on peptides.
Chatzisideri T, Leonidis G, Sarli V., Future Med Chem 10(18), 2018
PMID: 30043641
Peptide-based targeted therapeutics: Focus on cancer treatment.
Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M., J Control Release 292(), 2018
PMID: 30408554
An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides.
Esposito S, Mele R, Ingenito R, Bianchi E, Bonelli F, Monteagudo E, Orsatti L., Anal Bioanal Chem 409(10), 2017
PMID: 28138743
PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity.
Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A, Ford J, Wu G, Kneller S, Davies J, Duncan R., Bioconjug. Chem. 16(4), 2005
PMID: 16029018
Strategies and challenges for the next generation of antibody-drug conjugates.
Beck A, Goetsch L, Dumontet C, Corvaia N., Nat Rev Drug Discov 16(5), 2017
PMID: 28303026
Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity.
Dubowchik GM, Firestone RA, Padilla L, Willner D, Hofstead SJ, Mosure K, Knipe JO, Lasch SJ, Trail PA., Bioconjug. Chem. 13(4), 2002
PMID: 12121142
Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody-Drug Conjugates.
Caculitan NG, Dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, Pillow TH, Sadowsky J, Cheung TK, Phung Q, Haley B, Lee BC, Akita RW, Sliwkowski MX, Polson AG., Cancer Res. 77(24), 2017
PMID: 29046337
FRET Reagent Reveals the Intracellular Processing of Peptide-Linked Antibody-Drug Conjugates.
Lee BC, Chalouni C, Doll S, Nalle SC, Darwish M, Tsai SP, Kozak KR, Del-Rosario G, Yu SF, Erickson H, Vandlen R., Bioconjug. Chem. 29(7), 2018
PMID: 29856915
Diketopiperazine formation and N-terminal degradation in recombinant human growth hormone.
Battersby JE, Hancock WS, Canova-Davis E, Oeswein J, O'Connor B., Int. J. Pept. Protein Res. 44(3), 1994
PMID: 7822097
Modulating Antibody-Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification.
Su D, Kozak KR, Sadowsky J, Yu SF, Fourie-O'Donohue A, Nelson C, Vandlen R, Ohri R, Liu L, Ng C, He J, Davis H, Lau J, Del Rosario G, Cosino E, Cruz-Chuh JD, Ma Y, Zhang D, Darwish M, Cai W, Chen C, Zhou H, Lu J, Liu Y, Kaur S, Xu K, Pillow TH., Bioconjug. Chem. 29(4), 2018
PMID: 29481745
Molecular Basis of Valine-Citrulline-PABC Linker Instability in Site-Specific ADCs and Its Mitigation by Linker Design.
Dorywalska M, Dushin R, Moine L, Farias SE, Zhou D, Navaratnam T, Lui V, Hasa-Moreno A, Casas MG, Tran TT, Delaria K, Liu SH, Foletti D, O'Donnell CJ, Pons J, Shelton DL, Rajpal A, Strop P., Mol. Cancer Ther. 15(5), 2016
PMID: 26944918
Cathepsin B Cleavage of vcMMAE-Based Antibody-Drug Conjugate Is Not Drug Location or Monoclonal Antibody Carrier Specific.
Gikanga B, Adeniji NS, Patapoff TW, Chih HW, Yi L., Bioconjug. Chem. 27(4), 2016
PMID: 26914498
Involvement of integrin alpha V gene expression in human melanoma tumorigenicity.
Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA., J. Clin. Invest. 89(6), 1992
PMID: 1376331
Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting.
Bodero L, Lopez Rivas P, Korsak B, Hechler T, Pahl A, Muller C, Arosio D, Pignataro L, Gennari C, Piarulli U., Beilstein J Org Chem 14(), 2018
PMID: 29520305
RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways.
Castel S, Pagan R, Mitjans F, Piulats J, Goodman S, Jonczyk A, Huber F, Vilaro S, Reina M., Lab. Invest. 81(12), 2001
PMID: 11742032
Clustering and internalization of integrin alphavbeta3 with a tetrameric RGD-synthetic peptide.
Sancey L, Lucie S, Garanger E, Elisabeth G, Foillard S, Stephanie F, Schoehn G, Guy S, Hurbin A, Amandine H, Albiges-Rizo C, Corinne AR, Boturyn D, Didier B, Souchier C, Catherine S, Grichine A, Alexei G, Dumy P, Pascal D, Coll JL, Jean-Luc C., Mol. Ther. 17(5), 2009
PMID: 19259068
Antiproliferative mechanism of action of cryptophycin-52: kinetic stabilization of microtubule dynamics by high-affinity binding to microtubule ends.
Panda D, DeLuca K, Williams D, Jordan MA, Wilson L., Proc. Natl. Acad. Sci. U.S.A. 95(16), 1998
PMID: 9689077
Targeted Delivery of Cytotoxic Drugs: Challenges, Opportunities and New Developments.
Cazzamalli S, Corso AD, Neri D., Chimia (Aarau) 71(10), 2017
PMID: 29070415
Material in PUB:
Teil dieser Dissertation
Conjugates of Cryptophycin and RGD Peptides for Targeted Cancer Therapy
Borbély AN (2019)
Bielefeld: Universität Bielefeld.

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 30939768
PubMed | Europe PMC

Suchen in

Google Scholar