Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study

Sreij R, Dargel C, Schweins R, Prévost S, Dattani R, Hellweg T (2019)
Scientific Reports 9(1): 5542.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.50 MB
Autor*in
Sreij, RamsiaUniBi; Dargel, CarinaUniBi; Schweins, Ralf; Prévost, Sylvain; Dattani, Rajeev; Hellweg, ThomasUniBi
Abstract / Bemerkung
The saponin aescin, a mixture of triterpenoid saponins, is obtained from the seeds of the horse chestnut tree Aesculus hippocastanum. The β-form employed in this study is haemolytically active. The haemolytic activity results from the ability of aescin to form strong complexes with cholesterol in the red blood cell membrane. In this study, we provide a structural analysis on the complex formation of aescin and cholesterol when embedded in a phospholipid model membrane formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In this work, the temperatures investigated extend from DMPC’s Lβ′ to its Lα phase in dependence of different amounts of the saponin (0–6 mol% for calorimetric and 0–1 mol% for structural analyses) and the steroid (1–10 mol%). At these aescin contents model membranes are conserved in the form of small unilamellar vesicles (SUVs) and major overall structural modifications are avoided. Additionally, interactions between aescin and cholesterol can be studied for both phase states of the lipid, the gel and the fluid state. From calorimetric experiments by differential scanning calorimetry (DSC), it could be shown that both, the steroid and the saponin content, have a significant impact on the cooperative phase transition behaviour of the DMPC molecules. In addition, it becomes clearly visible that the entire phase behaviour is dominated by phase separation which indeed also depends on the complexes formed between aescin and cholesterol. We show by various methods that the addition of cholesterol alters the impact of aescin on structural parameters ranging from the acyl chain correlation to vesicle-vesicle interactions. While the specific saponin-phospholipid interaction is reduced, addition of cholesterol leads to deformation of SUVs. The analyses of the structures formed were performed by wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS).
Erscheinungsjahr
2019
Zeitschriftentitel
Scientific Reports
Band
9
Ausgabe
1
Art.-Nr.
5542
ISSN
2045-2322
eISSN
2045-2322
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2934760

Zitieren

Sreij R, Dargel C, Schweins R, Prévost S, Dattani R, Hellweg T. Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports. 2019;9(1): 5542.
Sreij, R., Dargel, C., Schweins, R., Prévost, S., Dattani, R., & Hellweg, T. (2019). Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports, 9(1), 5542. doi:10.1038/s41598-019-41865-z
Sreij, Ramsia, Dargel, Carina, Schweins, Ralf, Prévost, Sylvain, Dattani, Rajeev, and Hellweg, Thomas. 2019. “Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study”. Scientific Reports 9 (1): 5542.
Sreij, R., Dargel, C., Schweins, R., Prévost, S., Dattani, R., and Hellweg, T. (2019). Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports 9:5542.
Sreij, R., et al., 2019. Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports, 9(1): 5542.
R. Sreij, et al., “Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study”, Scientific Reports, vol. 9, 2019, : 5542.
Sreij, R., Dargel, C., Schweins, R., Prévost, S., Dattani, R., Hellweg, T.: Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports. 9, : 5542 (2019).
Sreij, Ramsia, Dargel, Carina, Schweins, Ralf, Prévost, Sylvain, Dattani, Rajeev, and Hellweg, Thomas. “Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study”. Scientific Reports 9.1 (2019): 5542.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:06Z
MD5 Prüfsumme
10cb68d6281128d46b52933162da8516


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

50 References

Daten bereitgestellt von Europe PubMed Central.

Aescin: pharmacology, pharmacokinetics and therapeutic profile.
Sirtori CR., Pharmacol. Res. 44(3), 2001
PMID: 11529685
Effect of aescine on hypoxia-induced activation of human endothelial cells.
Arnould T, Janssens D, Michiels C, Remacle J., Eur. J. Pharmacol. 315(2), 1996
PMID: 8960888
Interaction of leucerne saponins with steroids.
Gestetner B, Assa Y, Henis Y, Tencer Y, Rotman M, Birk Y, Bondi A., Biochim. Biophys. Acta 270(1), 1972
PMID: 5037327
Action of saponin on biological cell membranes.
BANGHAM AD, HORNE RW, GLAUERT AM, DINGLE JT, LUCY JA., Nature 196(), 1962
PMID: 13966357
Electron microscopic observations on Rous sarcoma virus and cell membranes.
DOURMASHKIN RR, DOUGHERTY RM, HARRIS RJ., Nature 194(), 1962
PMID: 13887581
Escin inhibits type I allergic dermatitis in a novel porcine model.
Sipos W, Reutterer B, Frank M, Unger H, Grassauer A, Prieschl-Grassauer E, Doerfler P., Int. Arch. Allergy Immunol. 161(1), 2012
PMID: 23257653
Aescin Incorporation and Nanodomain Formation in DMPC Model Membranes.
Sreij R, Dargel C, Moleiro LH, Monroy F, Hellweg T., Langmuir 33(43), 2017
PMID: 28985678
Interaction of the Saponin Aescin with Ibuprofen in DMPC Model Membranes.
Sreij R, Prevost S, Dargel C, Dattani R, Hertle Y, Wrede O, Hellweg T., Mol. Pharm. 15(10), 2018
PMID: 30102549
DMPC vesicle structure and dynamics in the presence of low amounts of the saponin aescin.
Sreij R , Dargel C , Geisler P , Hertle Y , Radulescu A , Pasini S , Perez J , Moleiro LH , Hellweg T ., Phys Chem Chem Phys 20(14), 2018
PMID: 29505043
Molecular simulation of the DMPC-cholesterol phase diagram.
de Meyer FJ, Benjamini A, Rodgers JM, Misteli Y, Smit B., J Phys Chem B 114(32), 2010
PMID: 20662483
The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.
Golemanov K, Tcholakova S, Denkov N, Pelan E, Stoyanov SD., Soft Matter 10(36), 2014
PMID: 24945943
Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle x-ray scattering.
Pedersen JS, Oliveira CL, Hubschmann HB, Arleth L, Manniche S, Kirkby N, Nielsen HM., Biophys. J. 102(10), 2012
PMID: 22677391
Structure of gel phase DMPC determined by X-ray diffraction.
Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF., Biophys. J. 83(6), 2002
PMID: 12496100
Temperature dependent self-organization of DMPC membranes promoted by intermediate amounts of the saponin aescin.
Sreij R, Dargel C, Hannappel Y, Jestin J, Prevost S, Dattani R, Wrede O, Hellweg T., Biochim Biophys Acta Biomembr 1861(5), 2019
PMID: 30735626
Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy.
Small DM, Penkett SA, Chapman D., Biochim. Biophys. Acta 176(1), 1969
PMID: 5766016
Bile Acids: The Good, the Bad, and the Ugly.
Hofmann AF., News Physiol. Sci. 14(), 1999
PMID: 11390813
Bile acids: chemistry, physiology, and pathophysiology.
Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J., World J. Gastroenterol. 15(7), 2009
PMID: 19230041
Solubilization of membranes by detergents.
Helenius A, Simons K., Biochim. Biophys. Acta 415(1), 1975
PMID: 1091302
Analysis of Quil A-phospholipid mixtures using drift spectroscopy.
Demana PH, Davies NM, Hook S, Rades T., Int J Pharm 342(1-2), 2007
PMID: 17555894
Self-Assembly of Escin Molecules at the Air-Water Interface as Studied by Molecular Dynamics.
Tsibranska S, Ivanova A, Tcholakova S, Denkov N., Langmuir 33(33), 2017
PMID: 28749143
Lecithin bilayers. Density measurement and molecular interactions.
Nagle JF, Wilkinson DA., Biophys. J. 23(2), 1978
PMID: 687759
Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: a small-angle neutron scattering study.
Balgavy P, Dubnickova M, Kucerka N, Kiselev MA, Yaradaikin SP, Uhrikova D., Biochim. Biophys. Acta 1512(1), 2001
PMID: 11334623
Small-angle neutron scattering studies of phospholipid-NSAID adducts.
Boggara MB, Krishnamoorti R., Langmuir 26(8), 2010
PMID: 20014785
Fluid phase structure of EPC and DMPC bilayers.
Petrache HI, Tristram-Nagle S, Nagle JF., Chem. Phys. Lipids 95(1), 1998
PMID: 9807810
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski K, Salditt A, Xu Y, Yavuz H, Brennich M, Jahn R, Salditt T., Biophys. J. 114(8), 2018
PMID: 29694868
Power-law fluctuations in phase-separated lipid membranes.
Winter R, Gabke A, Czeslik C, Pfeifer P., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(6 Pt B), 1999
PMID: 11970681
Synthetic phospholipid analogs: a structural investigation with scattering methods.
Orthaber D, Glatter O., Chem. Phys. Lipids 107(2), 2000
PMID: 11090847
Diffuse small-angle scattering of X-rays in colloid systems.
KRATKY O, POROD G., J Colloid Sci 4(1), 1949
PMID: 18110601
What can we learn about the lipid vesicle structure from the small-angle neutron scattering experiment?
Kiselev MA, Zemlyanaya EV, Aswal VK, Neubert RH., Eur. Biophys. J. 35(6), 2006
PMID: 16614864
Effect of pH and ibuprofen on the phospholipid bilayer bending modulus.
Boggara MB, Faraone A, Krishnamoorti R., J Phys Chem B 114(24), 2010
PMID: 20518571
Synchrotron SAX and WAX diffraction study of a hydrated very long-chain, dendritic amphiphile + DPPC mixture.
Karlovska J, Williams AA, Macri RV, Gandour RD, Funari SS, Uhrikova D, Balgavy P., Colloids Surf B Biointerfaces 54(2), 2006
PMID: 17134885
Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles.
Eicher B, Marquardt D, Heberle FA, Letofsky-Papst I, Rechberger GN, Appavou MS, Katsaras J, Pabst G., Biophys. J. 114(1), 2018
PMID: 29320681
A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering.
Narayanan T, Sztucki M, Van Vaerenbergh P, Leonardon J, Gorini J, Claustre L, Sever F, Morse J, Boesecke P., J Appl Crystallogr 51(Pt 6), 2018
PMID: 30546286
The chemistry and biological significance of saponins in foods and feedingstuffs.
Price KR, Johnson IT, Fenwick GR., Crit Rev Food Sci Nutr 26(1), 1987
PMID: 3308321
Effects of escins Ia, Ib, IIa, and IIb from horse chestnut, the seeds of Aesculus hippocastanum L., on acute inflammation in animals.
Matsuda H, Li Y, Murakami T, Ninomiya K, Yamahara J, Yoshikawa M., Biol. Pharm. Bull. 20(10), 1997
PMID: 9353571
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30944386
PubMed | Europe PMC

Suchen in

Google Scholar