Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects

Raad M, Glare TR, Brochero HL, Müller C, Rostás M (2019)
Frontiers in Microbiology 10: 615.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Raad, Maya; Glare, Travis R. ; Brochero, Helena L.; Müller, CarolineUniBi; Rostás, Michael
Abstract / Bemerkung
The entomopathogenic fungus Beauveria bassiana can adopt an endophytic lifestyle by colonising a wide array of plant species. Beauveria-colonised plants can show enhanced resistance against insects and plant pathogens alike. However, little is known about the molecular and physiological mechanisms that govern such interactions. Here, we assessed the effects of two B. bassiana strains (BG11, FRh2) on the growth of Arabidopsis thaliana and its resistance against two herbivore species and a phytopathogen. Plant responses were studied on the transcriptomic and metabolic level using microarrays and by measuring changes in defence-related phytohormones and glucosinolates. Root inoculation with B. bassiana BG11 significantly increased plant growth, while FRh2 had no such effect. Both Beauveria strains decreased leaf lesion area caused by the phytopathogen Sclerotinia sclerotiorum but did not affect population growth of the aphid Myzus persicae or the growth of Plutella xylostella caterpillars. Microarray analyses of leaves from endophyte-inoculated A. thaliana provided evidence for transcriptional reprogramming of plant defence pathways, with strain-specific changes in the expression of genes related to pathogenesis, phytoalexin, jasmonic (JA) and salicylic acid (SA) signalling pathways. However, B. bassiana colonisation did not result in higher concentrations of JA and SA or major changes in leaf glucosinolate (GLS) profiles. We conclude that the endophyte B. bassiana induces plant defence responses and hypothesise that these contribute to enhanced resistance against S. sclerotiorum.
Stichworte
endophyte; induced resistance; plant-microbe associations; phytohormones; Plutella xyllostella; Myzus persicae; Sclerotinia sclerotiorum; Microarray; Glucosinolates
Erscheinungsjahr
2019
Zeitschriftentitel
Frontiers in Microbiology
Band
10
Seite(n)
615
ISSN
1664-302x
eISSN
1664-302X
Page URI
https://pub.uni-bielefeld.de/record/2934428

Zitieren

Raad M, Glare TR, Brochero HL, Müller C, Rostás M. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology. 2019;10:615.
Raad, M., Glare, T. R., Brochero, H. L., Müller, C., & Rostás, M. (2019). Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology, 10, 615. doi:10.3389/fmicb.2019.00615
Raad, M., Glare, T. R., Brochero, H. L., Müller, C., and Rostás, M. (2019). Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology 10, 615.
Raad, M., et al., 2019. Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology, 10, p 615.
M. Raad, et al., “Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects”, Frontiers in Microbiology, vol. 10, 2019, pp. 615.
Raad, M., Glare, T.R., Brochero, H.L., Müller, C., Rostás, M.: Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects. Frontiers in Microbiology. 10, 615 (2019).
Raad, Maya, Glare, Travis R., Brochero, Helena L., Müller, Caroline, and Rostás, Michael. “Transcriptional reprogramming of Arabidopsis thaliana defence pathways by the entomopathogen Beauveria bassiana correlates with resistance against a fungal pathogen but not against insects”. Frontiers in Microbiology 10 (2019): 615.

107 References

Daten bereitgestellt von Europe PubMed Central.

An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
Albert I, Bohm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J, Hedrich R, Van den Ackerveken G, Nurnberger T., Nat Plants 1(), 2015
PMID: 27251392
MAP kinase signalling cascade in Arabidopsis innate immunity.
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J., Nature 415(6875), 2002
PMID: 11875555
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G., Nat. Genet. 25(1), 2000
PMID: 10802651
WRKY transcription factors: Jack of many trades in plants.
Bakshi M, Oelmuller R., Plant Signal Behav 9(2), 2014
PMID: 24492469
Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants.
Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schafer P, Schwarczinger I, Zuccaro A, Skoczowski A., New Phytol. 180(2), 2008
PMID: 18681935
Role of plant hormones in plant defence responses.
Bari R, Jones JD., Plant Mol. Biol. 69(4), 2008
PMID: 19083153
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
Benjamini Y., Hochberg Y.., 1995
Suppression of Ostrinia nubilalis (Hubner) (Lepidoptera, Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin.
Bing L., Lewis L.., 1991
Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker.
Biswas C., Dey P., Satpathy S., Satya P.., 2012
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.
Bolstad BM, Irizarry RA, Astrand M, Speed TP., Bioinformatics 19(2), 2003
PMID: 12538238
Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.
Brotman Y, Landau U, Cuadros-Inostroza A, Tohge T, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L., PLoS Pathog. 9(3), 2013
PMID: 23516362
Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana.
Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J., Phytochemistry 62(3), 2003
PMID: 12620360
Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings.
Brownbridge M., Reay S., Nelson T., Glare T.., 2012
The effects of glucosinolates and their breakdown products on necrotrophic fungi.
Buxdorf K, Yaffe H, Barda O, Levy M., PLoS ONE 8(8), 2013
PMID: 23940639
Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.
Card S, Johnson L, Teasdale S, Caradus J., FEMS Microbiol. Ecol. 92(8), 2016
PMID: 27222223
Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates.
Contreras-Cornejo HA, Macias-Rodriguez L, Alfaro-Cuevas R, Lopez-Bucio J., Mol. Plant Microbe Interact. 27(6), 2014
PMID: 24502519
Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea.
Contreras-Cornejo HA, Macias-Rodriguez L, Beltran-Pena E, Herrera-Estrella A, Lopez-Bucio J., Plant Signal Behav 6(10), 2011
PMID: 21931272
Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants.
Das K., Roychoudhury A.., 2014
The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity.
Daudi A, Cheng Z, O'Brien JA, Mammarella N, Khan S, Ausubel FM, Bolwell GP., Plant Cell 24(1), 2012
PMID: 22247251
Plant immunity: towards an integrated view of plant-pathogen interactions.
Dodds PN, Rathjen JP., Nat. Rev. Genet. 11(8), 2010
PMID: 20585331
Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance.
Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Munoz-Blanco J, Caballero JL., J. Exp. Bot. 60(11), 2009
PMID: 19470657
A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA.
Fu M, Kang HK, Son SH, Kim SK, Nam KH., Plant Cell Physiol. 55(11), 2014
PMID: 25189341
Fungal endophytes in seeds and needles of Pinus monticola.
Ganley RJ, Newcombe G., Mycol. Res. 110(Pt 3), 2006
PMID: 16492396
Piriformospora indica: Potential and Significance in Plant Stress Tolerance.
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N., Front Microbiol 7(), 2016
PMID: 27047458
Have biopesticides come of age?
Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A., Trends Biotechnol. 30(5), 2012
PMID: 22336383
Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.
Golo PS, Gardner DR, Grilley MM, Takemoto JY, Krasnoff SB, Pires MS, Fernandes EK, Bittencourt VR, Roberts DW., PLoS ONE 9(8), 2014
PMID: 25127450
Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi.
Gomez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV., Electrophoresis 30(17), 2009
PMID: 19676091
The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana.
Graser G, Oldham NJ, Brown PD, Temp U, Gershenzon J., Phytochemistry 57(1), 2001
PMID: 11336257
Getting ready for battle: do cabbage seeds acid treated with jasmonic sap chitosan affect chewing and-feeding insects?
Haas J., Lozana E., Haida K., Mazara S., Souza E., Poppy G.., 2018

Hajek A.., 2004
Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions.
Hardtke CS, Dorcey E, Osmont KS, Sibout R., Trends Cell Biol. 17(10), 2007
PMID: 17904848
Plant-beneficial effects of Trichoderma and of its genes.
Hermosa R, Viterbo A, Chet I, Monte E., Microbiology (Reading, Engl.) 158(Pt 1), 2011
PMID: 21998166
Role of glucosinolates in insect-plant relationships and multitrophic interactions.
Hopkins RJ, van Dam NM, van Loon JJ., Annu. Rev. Entomol. 54(), 2009
PMID: 18811249
Fungal entomopathogens as endophytes: can they promote plant growth?
Jaber L., Enkerli J.., 2017
Insect pathogens as biological control agents: Back to the future.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS., J. Invertebr. Pathol. 132(), 2015
PMID: 26225455
The plant immune system.
Jones JD, Dangl JL., Nature 444(7117), 2006
PMID: 17108957
Cytokinins.
Kieber JJ, Schaller GE., Arabidopsis Book 12(), 2014
PMID: 24465173
Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis.
Krishnaswamy S, Verma S, Rahman MH, Kav NN., Plant Mol. Biol. 75(1-2), 2010
PMID: 21069430
Insect pathogens as biological control agents: Back to the future.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS., J. Invertebr. Pathol. 132(), 2015
PMID: 26225455
Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling.
Lee DS, Kim BK, Kwon SJ, Jin HC, Park OK., Biochem. Biophys. Res. Commun. 379(4), 2009
PMID: 19146828
Fungal endophytes for sustainable crop production.
Lugtenberg BJ, Caradus JR, Johnson LJ., FEMS Microbiol. Ecol. 92(12), 2016
PMID: 27624083
Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape.
Maag D., Kandula D., Müller C., Mendoza-Mendoza A., Wratten S., Stewart A.., 2014
The transcriptome of Arabidopsis thaliana during systemic acquired resistance.
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA., Nat. Genet. 26(4), 2000
PMID: 11101835
Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection.
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B., Front Plant Sci 3(), 2012
PMID: 22661981
Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential.
McKinnon A., Saari S., Moran-Diez M., Meyling N., Raad M., Glare T.., 2017
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.
Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD., Nucleic Acids Res. 45(D1), 2016
PMID: 27899595
Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew.
Molitor A, Zajic D, Voll LM, Pons-K Hnemann J, Samans B, Kogel KH, Waller F., Mol. Plant Microbe Interact. 24(12), 2011
PMID: 21830949
Trichoderma research in the genome era.
Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM., Annu Rev Phytopathol 51(), 2013
PMID: 23915132
Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci.
Muvea AM, Meyhofer R, Subramanian S, Poehling HM, Ekesi S, Maniania NK., PLoS ONE 9(9), 2014
PMID: 25254657
SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription.
Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C., Plant J. 50(1), 2007
PMID: 17397508
Balancing defense and growth—Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana.
Nongbri P., Vahabi K., Mrozinska A., Seebald E., Sun C., Sherameti I.., 2012
Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola.
Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK., Plant Cell 17(10), 2005
PMID: 16126835
Beauveria bassiana: endophytic colonization and plant disease control.
Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM., J. Invertebr. Pathol. 98(3), 2008
PMID: 18442830
Induced systemic resistance by beneficial microbes.
Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA., Annu Rev Phytopathol 52(), 2014
PMID: 24906124
Hormonal modulation of plant immunity.
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC., Annu. Rev. Cell Dev. Biol. 28(), 2012
PMID: 22559264
Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production.
Pieterse CMJ, Pelt JAvan, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Metraux JP, Loon LCvan., Physiol. Mol. Plant Pathol. 57(3), 2000
PMID: IND22297682
The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense.
Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J., Plant Physiol. 147(3), 2008
PMID: 18467450
Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants
Qayyum MA, Christopher A. Dunlap , Muhammad Jalal Arif , Shahbaz Talib Sahi , Waqas Wakil ., Biol. Control 90(), 2015
PMID: IND605328885
Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis.
Queitsch C, Hong SW, Vierling E, Lindquist S., Plant Cell 12(4), 2000
PMID: 10760238
Disarming the mustard oil bomb.
Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12161563
Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests
Reay SD, Brownbridge M, Gicquel B, Cummings NJ, Nelson TL., Biol. Control 54(1), 2010
PMID: IND44375563
ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis.
Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z., Plant J. 63(3), 2010
PMID: 20487379
Targets of AtWRKY6 regulation during plant senescence and pathogen defense.
Robatzek S, Somssich IE., Genes Dev. 16(9), 2002
PMID: 12000796
Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naive parasitoids.
Rostas M, Ton J, Mauch-Mani B, Turlings TC., J. Chem. Ecol. 32(9), 2006
PMID: 16902818
Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts.
Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK., Annu. Rev. Entomol. 51(), 2006
PMID: 16332215
WRKY transcription factors.
Rushton PJ, Somssich IE, Ringler P, Shen QJ., Trends Plant Sci. 15(5), 2010
PMID: 20304701
Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways.
Salas-Marina M., Silva-Flores M., Uresti-Rivera E., Castro-Longoria E., Herrera-Estrella A., Casas-Flores S.., 2011
The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites.
Schmelz EA, Engelberth J, Tumlinson JH, Block A, Alborn HT., Plant J. 39(5), 2004
PMID: 15315639
The endophytic continuum.
Schulz B, Boyle C., Mycol. Res. 109(Pt 6), 2005
PMID: 16080390
A key role for ALD1 in activation of local and systemic defenses in Arabidopsis.
Song JT, Lu H, McDowell JM, Greenberg JT., Plant J. 40(2), 2004
PMID: 15447647
Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma.
Steyaert J., Ridgway H., Elad Y., Stewart A.., 2003
Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y., Plant J. 67(1), 2011
PMID: 21418358
Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella.
Sun BT, Akutse KS, Xia XF, Chen JH, Ai X, Tang Y, Wang Q, Feng BW, Goettel MS, You MS., Planta 248(3), 2018
PMID: 29948125
The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana.
Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R., J. Biol. Chem. 283(14), 2008
PMID: 18201973
Endophytic fungi alter sucking bug responses to cotton reproductive structures.
Sword GA, Tessnow A, Ek-Ramos MJ., Insect Sci. 24(6), 2017
PMID: 28328087
Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition.
Tang D, Wang G, Zhou JM., Plant Cell 29(4), 2017
PMID: 28302675
Expansion of the Gene Ontology knowledgebase and resources.
The Gene Ontology Consortium., Nucleic Acids Res. 45(D1), 2016
PMID: 27899567
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
CYP707A3, a major ABA 8'-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana.
Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K., Plant J. 46(2), 2006
PMID: 16623881
A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize.
Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M., Plant Cell Environ. 32(9), 2009
PMID: 19389052
Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes.
Van der Ent S, Van Wees SC, Pieterse CM., Phytochemistry 70(13-14), 2009
PMID: 19712950
Fungal entomopathogens: new insights on their ecology.
Vega F., Goettel M., Blackwell M., Chandler D., Jackson M., Keller S.., 2009
Endophytic bacteria in Coffea arabica L.
Vega FE, Pava-Ripoll M, Posada F, Buyer JS., J. Basic Microbiol. 45(5), 2005
PMID: 16187260
Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interactions and prospects for use in biological control.
Vidal S., Jaber L.., 2015
The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.
Vos CM, De Cremer K, Cammue BP, De Coninck B., Mol. Plant Pathol. 16(4), 2014
PMID: 25171761
The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield.
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH., Proc. Natl. Acad. Sci. U.S.A. 102(38), 2005
PMID: 16174735
A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G., Plant Cell 20(2), 2008
PMID: 18263776
Post-translational regulation of plant immunity.
Withers J, Dong X., Curr. Opin. Plant Biol. 38(), 2017
PMID: 28538164
Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity.
Yang X., Deng F., Ramonell K.., 2012
Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice.
Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M., Pest Manag. Sci. 68(1), 2011
PMID: 21674754

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30984142
PubMed | Europe PMC

Suchen in

Google Scholar