Biharmonic wave maps: Local wellposedness in high regularity
Herr S, Lamm T, Schmid T, Schnaubelt R (2020)
Nonlinearity 33(5): 2270-2305.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Herr, SebastianUniBi ;
Lamm, Tobias;
Schmid, Tobias;
Schnaubelt, Roland
Einrichtung
Abstract / Bemerkung
We show the local wellposedness of biharmonic wave maps with initial data of
sufficiently high Sobolev regularity and a blow-up criterion in the sup-norm of
the gradient of the solutions. In contrast to the wave maps equation we use a
vanishing viscosity argument and an appropriate parabolic regularization in
order to obtain the existence result. The geometric nature of the equation is
exploited to prove convergence of approximate solutions, uniqueness of the
limit, and continuous dependence on initial data.
Erscheinungsjahr
2020
Zeitschriftentitel
Nonlinearity
Band
33
Ausgabe
5
Seite(n)
2270-2305
Urheberrecht / Lizenzen
ISSN
0951-7715
eISSN
1361-6544
Page URI
https://pub.uni-bielefeld.de/record/2934334
Zitieren
Herr S, Lamm T, Schmid T, Schnaubelt R. Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity. 2020;33(5):2270-2305.
Herr, S., Lamm, T., Schmid, T., & Schnaubelt, R. (2020). Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity, 33(5), 2270-2305. https://doi.org/10.1088/1361-6544/ab73ce
Herr, Sebastian, Lamm, Tobias, Schmid, Tobias, and Schnaubelt, Roland. 2020. “Biharmonic wave maps: Local wellposedness in high regularity”. Nonlinearity 33 (5): 2270-2305.
Herr, S., Lamm, T., Schmid, T., and Schnaubelt, R. (2020). Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity 33, 2270-2305.
Herr, S., et al., 2020. Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity, 33(5), p 2270-2305.
S. Herr, et al., “Biharmonic wave maps: Local wellposedness in high regularity”, Nonlinearity, vol. 33, 2020, pp. 2270-2305.
Herr, S., Lamm, T., Schmid, T., Schnaubelt, R.: Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity. 33, 2270-2305 (2020).
Herr, Sebastian, Lamm, Tobias, Schmid, Tobias, and Schnaubelt, Roland. “Biharmonic wave maps: Local wellposedness in high regularity”. Nonlinearity 33.5 (2020): 2270-2305.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 3.0 Unported (CC BY 3.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2022-03-07T16:53:34Z
MD5 Prüfsumme
86f7da324903d336b2e93fad84a022d5
Link(s) zu Volltext(en)
Access Level
Open Access
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in