Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation

Ismail M, Schröder L, Frese M, Kottke T, Hollmann F, Paul CE, Sewald N (2019)
ACS Catalysis 9(2): 1389-1395.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Erscheinungsjahr
2019
Zeitschriftentitel
ACS Catalysis
Band
9
Ausgabe
2
Seite(n)
1389-1395
ISSN
2155-5435
eISSN
2155-5435
Page URI
https://pub.uni-bielefeld.de/record/2934167

Zitieren

Ismail M, Schröder L, Frese M, et al. Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis. 2019;9(2):1389-1395.
Ismail, M., Schröder, L., Frese, M., Kottke, T., Hollmann, F., Paul, C. E., & Sewald, N. (2019). Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis, 9(2), 1389-1395. https://doi.org/10.1021/acscatal.8b04500
Ismail, Mohamed, Schröder, Lea, Frese, Marcel, Kottke, Tilman, Hollmann, Frank, Paul, Caroline E., and Sewald, Norbert. 2019. “Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation”. ACS Catalysis 9 (2): 1389-1395.
Ismail, M., Schröder, L., Frese, M., Kottke, T., Hollmann, F., Paul, C. E., and Sewald, N. (2019). Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis 9, 1389-1395.
Ismail, M., et al., 2019. Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis, 9(2), p 1389-1395.
M. Ismail, et al., “Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation”, ACS Catalysis, vol. 9, 2019, pp. 1389-1395.
Ismail, M., Schröder, L., Frese, M., Kottke, T., Hollmann, F., Paul, C.E., Sewald, N.: Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis. 9, 1389-1395 (2019).
Ismail, Mohamed, Schröder, Lea, Frese, Marcel, Kottke, Tilman, Hollmann, Frank, Paul, Caroline E., and Sewald, Norbert. “Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation”. ACS Catalysis 9.2 (2019): 1389-1395.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

41 References

Daten bereitgestellt von Europe PubMed Central.

Halogen atoms in the modern medicinal chemistry: hints for the drug design.
Hernandes MZ, Cavalcanti SM, Moreira DR, de Azevedo Junior WF, Leite AC., Curr Drug Targets 11(3), 2010
PMID: 20210755
Catalytic mechanisms, basic roles, and biotechnological and environmental significance of halogenating enzymes.
Chen X, van Pee KH., Acta Biochim. Biophys. Sin. (Shanghai) 40(3), 2008
PMID: 18330472
Scope and potential of halogenases in biosynthetic applications.
Smith DR, Gruschow S, Goss RJ., Curr Opin Chem Biol 17(2), 2013
PMID: 23433955
Nature's inventory of halogenation catalysts: oxidative strategies predominate.
Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT., Chem. Rev. 106(8), 2006
PMID: 16895332
Regioselective Control of Electrophilic Aromatic SubstitutionReactions
AUTHOR UNKNOWN, 2004
Metal-mediated reductive hydrodehalogenation of organic halides.
Alonso F, Beletskaya IP, Yus M., Chem. Rev. 102(11), 2002
PMID: 12428984
Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination.
Dong C, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH., Science 309(5744), 2005
PMID: 16195462
Regioselective EnzymaticHalogenation of Substituted Tryptophan Derivatives Using the FAD-DependentHalogenase RebH
AUTHOR UNKNOWN, 2014
Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling.
Andorfer MC, Grob JE, Hajdin CE, Chael JR, Siuti P, Lilly J, Tan KL, Lewis JC., ACS Catal 7(3), 2017
PMID: 28989809
Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes.
Shepherd SA, Karthikeyan C, Latham J, Struck AW, Thompson ML, Menon BRK, Styles MQ, Levy C, Leys D, Micklefield J., Chem Sci 6(6), 2015
PMID: 29511510
Regeneration of cofactors for use in biocatalysis.
Zhao H, van der Donk WA., Curr. Opin. Biotechnol. 14(6), 2003
PMID: 14662386
Recent developments in pyridine nucleotide regeneration.
van der Donk WA, Zhao H., Curr. Opin. Biotechnol. 14(4), 2003
PMID: 12943852
Regioselective arene halogenation using the FAD-dependent halogenase RebH.
Payne JT, Andorfer MC, Lewis JC., Angew. Chem. Int. Ed. Engl. 52(20), 2013
PMID: 23592388
Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
Payne JT, Poor CB, Lewis JC., Angew. Chem. Int. Ed. Engl. 54(14), 2015
PMID: 25678465
FADH-Dependence of Tryptophan 7-Halogenase
AUTHOR UNKNOWN, 2005
Mimicking nature: synthetic nicotinamide cofactors for C═C bioreduction using enoate reductases.
Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernandez V, Gotor V, Taglieber A, Arends IW, Hollmann F., Org. Lett. 15(1), 2012
PMID: 23256747
In situ formation of H2O2 for P450 peroxygenases.
Paul CE, Churakova E, Maurits E, Girhard M, Urlacher VB, Hollmann F., Bioorg. Med. Chem. 22(20), 2014
PMID: 24984939
The Reduction of Thioketones by aModel for a Coenzyme
AUTHOR UNKNOWN, 1957
Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action.
Haynes RK, Chan WC, Wong HN, Li KY, Wu WK, Fan KM, Sung HH, Williams ID, Prosperi D, Melato S, Coghi P, Monti D., ChemMedChem 5(8), 2010
PMID: 20629071
Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.
Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS., J. Am. Chem. Soc. 138(3), 2016
PMID: 26727612
Iodomethylate of Nicotinic Amide
AUTHOR UNKNOWN, 1936
Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds1a,b.
Taylor KE, Jones JB., J. Am. Chem. Soc. 98(18), 1976
PMID: 182735
Bioorganometallic Chemistry:Biocatalytic OxidationReactions with Biomimetic NAD/NADH Co-Factors and [Cp*Rh(Bpy)H for Selective Organic Synthesis
AUTHOR UNKNOWN, 2004
Is Simpler Better? Synthetic NicotinamideCofactor Analogues for Redox Chemistry
AUTHOR UNKNOWN, 2014
Nonenzymatic Regenerationof Styrene Monooxygenasefor Catalysis
AUTHOR UNKNOWN, 2015
1-Benzyldihydronicotinamide—AModel for ReducedDPN
AUTHOR UNKNOWN, 1955
A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005.
Zehner S, Kotzsch A, Bister B, Sussmuth RD, Mendez C, Salas JA, van Pee KH., Chem. Biol. 12(4), 2005
PMID: 15850981
A Flavin-DependentTryptophan 6-Halogenaseand Its Use in Modification of Pyrrolnitrin Biosynthesis
AUTHOR UNKNOWN, 2006
HydrideTransferand Oxyanion Addition Equilibria of NAD Analogues
AUTHOR UNKNOWN, 1985
Activation of molecular oxygen by flavins and flavoproteins.
Massey V., J. Biol. Chem. 269(36), 1994
PMID: 8077188
Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
Yeh E, Cole LJ, Barr EW, Bollinger JM Jr, Ballou DP, Walsh CT., Biochemistry 45(25), 2006
PMID: 16784243
PhotochemicallyDriven Biocatalysis of Halogenases for the Green Production of ChlorinatedCompounds
AUTHOR UNKNOWN, 2018
The chemical and biological versatility of riboflavin.
Massey V., Biochem. Soc. Trans. 28(4), 2000
PMID: 10961912
Enzymatic halogenation of tryptophan on a gram scale.
Frese M, Sewald N., Angew. Chem. Int. Ed. Engl. 54(1), 2014
PMID: 25394328
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30775067
PubMed | Europe PMC

Suchen in

Google Scholar