Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.

Osterloff J, Nilssen I, Jarnegren J, Van Engeland T, Buhl-Mortensen P, Nattkemper TW (2019)
Scientific reports 9(1): 6578.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 3.75 MB
Autor*in
Osterloff, Jonas; Nilssen, Ingunn; Jarnegren, Johanna; Van Engeland, Tom; Buhl-Mortensen, Pal; Nattkemper, Tim WilhelmUniBi
Abstract / Bemerkung
An array of sensors, including an HD camera mounted on a Fixed Underwater Observatory (FUO) were used to monitor a cold-water coral (Lophelia pertusa) reef in the Lofoten-Vesteralen area from April to November 2015. Image processing and deep learning enabled extraction of time series describing changes in coral colour and polyp activity (feeding). The image data was analysed together with data from the other sensors from the same period, to provide new insights into the short- and long-term dynamics in polyp features. The results indicate that diurnal variations and tidal current influenced polyp activity, by controlling the food supply. On a longer time-scale, the coral's tissue colour changed from white in the spring to slightly red during the summer months, which can be explained by a seasonal change in food supply. Our work shows, that using an effective integrative computational approach, the image time series is a new and rich source of information to understand and monitor the dynamics in underwater environments due to the high temporal resolution and coverage enabled with FUOs.
Erscheinungsjahr
2019
Zeitschriftentitel
Scientific reports
Band
9
Ausgabe
1
Art.-Nr.
6578
eISSN
2045-2322
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2935488

Zitieren

Osterloff J, Nilssen I, Jarnegren J, Van Engeland T, Buhl-Mortensen P, Nattkemper TW. Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports. 2019;9(1): 6578.
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., & Nattkemper, T. W. (2019). Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports, 9(1), 6578. doi:10.1038/s41598-019-41275-1
Osterloff, Jonas, Nilssen, Ingunn, Jarnegren, Johanna, Van Engeland, Tom, Buhl-Mortensen, Pal, and Nattkemper, Tim Wilhelm. 2019. “Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.”. Scientific reports 9 (1): 6578.
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., and Nattkemper, T. W. (2019). Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports 9:6578.
Osterloff, J., et al., 2019. Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports, 9(1): 6578.
J. Osterloff, et al., “Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.”, Scientific reports, vol. 9, 2019, : 6578.
Osterloff, J., Nilssen, I., Jarnegren, J., Van Engeland, T., Buhl-Mortensen, P., Nattkemper, T.W.: Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory. Scientific reports. 9, : 6578 (2019).
Osterloff, Jonas, Nilssen, Ingunn, Jarnegren, Johanna, Van Engeland, Tom, Buhl-Mortensen, Pal, and Nattkemper, Tim Wilhelm. “Computer vision enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwater observatory.”. Scientific reports 9.1 (2019): 6578.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-05-09T06:30:22Z
MD5 Prüfsumme
5f54187b02fd346fb8663f93f389b439


74 References

Daten bereitgestellt von Europe PubMed Central.

Coral Reefs in the Southern Barents Sea: Habitat Description and the Effects of Bottom Fishing
Buhl-Mortensen P., 2017

AUTHOR UNKNOWN, 0
Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics
Mortensen P, Hovland T, Fosså JH, Furevik DM., 2001
Morphology and environment of cold-water coral carbonate mounds on the NW european margin
Wheeler AJ., 2007
The cold-water coral community as a hot spot for carbon cycling on continentalmargins: A food-web analysis from Rockall Bank (northeast Atlantic)
Van D., 2009
Particulate organic matter fluxes and hydrodynamics at the Tisler cold-water coral reef
Wagner H, Purser A, Thomsen L, Jesus CC, Lundälv T., 2011
Cold-water coral ecosystem (Tisler Reef, Norwegian Shelf) may be a hotspot for carbon cycling
White M., 2012

AUTHOR UNKNOWN, 0
Observations on the fauna of the North Brattholmen stone-coral reef near Bergen. Årbok for Universitetet i Bergen. Mat.-naturv
Burdon-Jones C, Tambs-Lyche H., 1960
The fauna associated with the bank-forming deepwater coral Lophelia pertusa (Scleractinaria) on the Faroe shelf
Jensen A, Frederiksen R., 1992

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Lipid biomarkers reveal geographicaldifferences in food supply to the cold-water coral Lophelia pertusa (Scleractinia)
Dodds LA, Black KD, Orr H, Roberts JM., 2009

AUTHOR UNKNOWN, 0
Trophic relationships in a deep mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea)
Carlier A., 2009
Physical and biological factors influencing the seasonal variation in distribution of zooplankton across the shelf at Nordvestbanken, northern Norway, 1994
Johanson AN., 1999
Marine wax esters
Sargent JR, Gatten RR, Henderso RJ., 1981
Natural occurrence of enantiomeric and meso astaxanthin 7-star-crustaceans including zooplankton
Foss P, Renstrom B, Liaaenjensen S., 1987
Astaxanthin: a review of its chemistry and applications.
Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM., Crit Rev Food Sci Nutr 46(2), 2006
PMID: 16431409
Lophelia pertusa (L.): Electrical conduction and behaviour in a deep-water coral
Shelton GAB., 1980

AUTHOR UNKNOWN, 0
A new laboratory method for monitoring deep-water coral polyp behaviour
Roberts JM, Anderson RM., 2002
Effects of water flow and drilling waste exposure on polyp behaviour in Lophelia pertusa
Buhl-Mortensen P, Tenningen E, Tysseland ABS., 2015
Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa.
Larsson AI, van Oevelen D, Purser A, Thomsen L., Mar. Pollut. Bull. 70(1-2), 2013
PMID: 23510599
Comparison of image Annotation Data Generated by Multiple Investigators for Benthic Ecology
Durden JM., 2016

AUTHOR UNKNOWN, 0
A taxonomy of external and internal attention.
Chun MM, Golomb JD, Turk-Browne NB., Annu Rev Psychol 62(), 2011
PMID: 19575619
On the failure to detect changes in scenes across brief interruptions
Rensink RA, O’Regan JK, Clark JJ., 2000
Use of machine-learning algorithms for the automated detection of cold-water coral habitats: A Pilot Study
Purser A, Bergmann M, Lundälv T, Ontrup J, Nattkemper TW., 2009

AUTHOR UNKNOWN, 0
Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and Operational Modes of Automation.
Beijbom O, Edmunds PJ, Roelfsema C, Smith J, Kline DI, Neal BP, Dunlap MJ, Moriarty V, Fan TY, Tan CJ, Chan S, Treibitz T, Gamst A, Mitchell BG, Kriegman D., PLoS ONE 10(7), 2015
PMID: 26154157
Fully automated image segmentation for benthic resource assessment of poly-metallic nodules
Schoening T, Kuhn T, Jones DOB, Simon-Lledo E, Nattkemper TW., 2016

AUTHOR UNKNOWN, 0
Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN.
Schoening T, Bergmann M, Ontrup J, Taylor J, Dannheim J, Gutt J, Purser A, Nattkemper TW., PLoS ONE 7(6), 2012
PMID: 22719868

AUTHOR UNKNOWN, 0
MAIA-A machine learning assisted image annotation method for environmental monitoring and exploration.
Zurowietz M, Langenkamper D, Hosking B, Ruhl HA, Nattkemper TW., PLoS ONE 13(11), 2018
PMID: 30444917

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A computer vision approach for monitoring the spatial and temporal shrimp distribution at the LoVe observatory
Osterloff J, Nilssen I, Nattkemper TW., 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Modeling polyp activity of Paragorgia arborea using supervised learning
Johanson AN, Flögel S, Dullo WC, Linke P, Hasselbring W., 2017

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Parametric image alignment using enhanced correlation coefficient maximization.
Evangelidis GD, Psarakis EZ., IEEE Trans Pattern Anal Mach Intell 30(10), 2008
PMID: 18703836
Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation.
Osterloff J, Nilssen I, Eide I, de Oliveira Figueiredo MA, de Souza Tamega FT, Nattkemper TW., PLoS ONE 11(6), 2016
PMID: 27285611

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Rectification of the bias in the wavelet power spectrum
Liu Y, San X, Weisberg RH., 2007
Cross-wavelet bias corrected by normalizing scales
Veleda D, Montagne R, Araujo M., 2012
Application of the cross wavelet transform and wavelet coherence to geophysical time series
Grinsted A, Moore JC, Jevrejeva. S., 2004
A practical guide to wavelet analysis
Torrence C, Compo GP., 1998

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic
Kiriakoulakis K, Bett BJ, White M, Wolff GA., 2004
Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain)
Duineveld GCA, Lavaleye MSS, Berghuis EM., 2004
The influence of flow velocity and food concentration on Lophelia Pertusa (Scleractinia) Zooplankton Capture Rates
Purser A, Larsson AI, Thomsen L, van D., 2010
The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa
Orejas C., 2016
Habitat selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters off Northern Norway in 2000–02
Halvorsen E, Tande KS, Edvardsen A, Slagstad D, Pedersen OP., 2003

AUTHOR UNKNOWN, 0
The North Atlantic ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits
Melle W., 2014
Spatio-temporal patterns in the copepod community in Malangen, Northern Norway
Falkenhaug T, Tande KS, Semenova T., 1997
A model study of demography and spatial distribution of Calanus finmarchicus at the Norwegian coast. Deep-sea
Pedersen PO, Tande KS, Slagstad D., 2001
Individual variability in diel vertical migration of a marine copepod: Why some individuals remain at depth when others migrate
Hays GC, Kennedy H, Frost BW., 2001
Midnight sinking behaviour in Calanus finmarchicus: a response to satiation or krill predation?
Tarling GA, Jarvis T, Emsley SM, Matthews JBL., 2002
Arctic complexity: a case study on diel vertical migration of zooplankton.
Berge J, Cottier F, Varpe O, Renaud PE, Falk-Petersen S, Kwasniewski S, Griffiths C, Soreide JE, Johnsen G, Aubert A, Bjærke O, Hovinen J, Jung-Madsen S, Tveit M, Majaneva S., J. Plankton Res. 36(5), 2014
PMID: 25221372
Geochemical and physical constraints for the occurrence of living cold-water corals
Flögel S, Dullo WC, Pfannkuche O, Kiriakoulakis K, Rüggeberg A., 2014

AUTHOR UNKNOWN, 0
Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States
Brooke S, Ross SW, Bane JM, Seim HE, Young CM., 2013

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31036904
PubMed | Europe PMC

Suchen in

Google Scholar