Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble

Akemann G, Kieburg M, Mielke A, Vidal P (2019)
Journal of Statistical Mechanics: Theory and Experiment 2019(2): 023102.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We consider a parameter dependent ensemble of two real random matrices with Gaussian distribution. It describes the transition between the symmetry class of the chiral Gaussian orthogonal ensemble (Cartan class B$|$DI) and the ensemble of antisymmetric Hermitian random matrices (Cartan class B$|$D). It enjoys the special feature that, depending on the matrix dimension $N$, it has exactly $\nu=0$ $(1)$ zero-mode for $N$ even (odd), throughout the symmetry transition. This "topological protection" is reminiscent of properties of topological insulators. We show that our ensemble represents a Pfaffian point process which is typical for such transition ensembles. On a technical level, our results follow from the applicability of the Harish-Chandra integral over the orthogonal group. The matrix valued kernel determining all eigenvalue correlation functions is explicitly constructed in terms of skew-orthogonal polynomials, depending on the topological index $\nu=0,1$. These polynomials interpolate between Laguerre and even (odd) Hermite polynomials for $\nu=0$ $(1)$, in terms of which the two limiting symmetry classes can be solved. Numerical simulations illustrate our analytical results for the spectral density and an expansion for the distribution of the smallest eigenvalue at finite $N$.
Erscheinungsjahr
2019
Zeitschriftentitel
Journal of Statistical Mechanics: Theory and Experiment
Band
2019
Ausgabe
2
Art.-Nr.
023102
ISSN
1742-5468
Page URI
https://pub.uni-bielefeld.de/record/2934131

Zitieren

Akemann G, Kieburg M, Mielke A, Vidal P. Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble. Journal of Statistical Mechanics: Theory and Experiment. 2019;2019(2): 023102.
Akemann, G., Kieburg, M., Mielke, A., & Vidal, P. (2019). Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble. Journal of Statistical Mechanics: Theory and Experiment, 2019(2), 023102. doi:10.1088/1742-5468/aaeee1
Akemann, Gernot, Kieburg, Mario, Mielke, Adam, and Vidal, Pedro. 2019. “Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble”. Journal of Statistical Mechanics: Theory and Experiment 2019 (2): 023102.
Akemann, G., Kieburg, M., Mielke, A., and Vidal, P. (2019). Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble. Journal of Statistical Mechanics: Theory and Experiment 2019:023102.
Akemann, G., et al., 2019. Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble. Journal of Statistical Mechanics: Theory and Experiment, 2019(2): 023102.
G. Akemann, et al., “Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2019, 2019, : 023102.
Akemann, G., Kieburg, M., Mielke, A., Vidal, P.: Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble. Journal of Statistical Mechanics: Theory and Experiment. 2019, : 023102 (2019).
Akemann, Gernot, Kieburg, Mario, Mielke, Adam, and Vidal, Pedro. “Preserving topology while breaking chirality: from chiral orthogonal to anti-symmetric Hermitian ensemble”. Journal of Statistical Mechanics: Theory and Experiment 2019.2 (2019): 023102.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 1806.10977

Suchen in

Google Scholar