Simple groups separated by finiteness properties

Skipper R, Witzel S, Zaremsky MCB (2019)
INVENTIONES MATHEMATICAE 215(2): 713-740.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Skipper, Rachel; Witzel, StefanUniBi; Zaremsky, Matthew C. B.
Abstract / Bemerkung
We show that for every positive integer n there exists a simple group that is of type Fn-1 but not of type Fn. For n3 these groups are the first known examples of this kind. They also provide infinitely many quasi-isometry classes of finitely presented simple groups. The only previously known infinite family of such classes, due to Caprace-Remy, consists of non-affine Kac-Moody groups over finite fields. Our examples arise from Rover-Nekrashevych groups, and contain free abelian groups of infinite rank.
Erscheinungsjahr
2019
Zeitschriftentitel
INVENTIONES MATHEMATICAE
Band
215
Ausgabe
2
Seite(n)
713-740
ISSN
0020-9910
eISSN
1432-1297
Page URI
https://pub.uni-bielefeld.de/record/2934130

Zitieren

Skipper R, Witzel S, Zaremsky MCB. Simple groups separated by finiteness properties. INVENTIONES MATHEMATICAE. 2019;215(2):713-740.
Skipper, R., Witzel, S., & Zaremsky, M. C. B. (2019). Simple groups separated by finiteness properties. INVENTIONES MATHEMATICAE, 215(2), 713-740. doi:10.1007/s00222-018-0835-8
Skipper, R., Witzel, S., and Zaremsky, M. C. B. (2019). Simple groups separated by finiteness properties. INVENTIONES MATHEMATICAE 215, 713-740.
Skipper, R., Witzel, S., & Zaremsky, M.C.B., 2019. Simple groups separated by finiteness properties. INVENTIONES MATHEMATICAE, 215(2), p 713-740.
R. Skipper, S. Witzel, and M.C.B. Zaremsky, “Simple groups separated by finiteness properties”, INVENTIONES MATHEMATICAE, vol. 215, 2019, pp. 713-740.
Skipper, R., Witzel, S., Zaremsky, M.C.B.: Simple groups separated by finiteness properties. INVENTIONES MATHEMATICAE. 215, 713-740 (2019).
Skipper, Rachel, Witzel, Stefan, and Zaremsky, Matthew C. B. “Simple groups separated by finiteness properties”. INVENTIONES MATHEMATICAE 215.2 (2019): 713-740.