Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces

Cloos CC (2019)
HOKKAIDO MATHEMATICAL JOURNAL 48(1): 207-244.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
It is shown that the cubic derivative nonlinear Schrodinger equation is locally well-posed in Besov spaces B-2,infinity(s) (X), s >= 1/2, where we treat the non-periodic setting X = R and the periodic setting X = T simultaneously. The proof is based on the strategy of Herr for initial data in H-s (T), s >= 1/2.
Erscheinungsjahr
2019
Zeitschriftentitel
HOKKAIDO MATHEMATICAL JOURNAL
Band
48
Ausgabe
1
Seite(n)
207-244
ISSN
0385-4035
Page URI
https://pub.uni-bielefeld.de/record/2934124

Zitieren

Cloos CC. Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces. HOKKAIDO MATHEMATICAL JOURNAL. 2019;48(1):207-244.
Cloos, C. C. (2019). Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces. HOKKAIDO MATHEMATICAL JOURNAL, 48(1), 207-244. doi:10.14492/hokmj/1550480650
Cloos, C. C. (2019). Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces. HOKKAIDO MATHEMATICAL JOURNAL 48, 207-244.
Cloos, C.C., 2019. Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces. HOKKAIDO MATHEMATICAL JOURNAL, 48(1), p 207-244.
C.C. Cloos, “Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces”, HOKKAIDO MATHEMATICAL JOURNAL, vol. 48, 2019, pp. 207-244.
Cloos, C.C.: Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces. HOKKAIDO MATHEMATICAL JOURNAL. 48, 207-244 (2019).
Cloos, Cai Constantin. “Local well-posedness for the derivative nonlinear Schrodinger Equation in Besov Spaces”. HOKKAIDO MATHEMATICAL JOURNAL 48.1 (2019): 207-244.