Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs.

Schonle J, Borisov K, Klett R, Dyck D, Balestro F, Reiss G, Wernsdorfer W (2019)
Scientific reports 9(1): 1987.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schonle, Joachim; Borisov, Kiril; Klett, RobinUniBi; Dyck, Denis; Balestro, Franck; Reiss, GünterUniBi ; Wernsdorfer, Wolfgang
Abstract / Bemerkung
The manifestation of spin-orbit interactions, long known to dramatically affect the band structure of heavy-element compounds, governs the physics in the surging class of topological matter. A particular example is found in the new family of topological crystalline insulators. In this systems transport occurs at the surfaces and spin-momentum locking yields crystal-symmetry protected spin-polarized transport. We investigated the current-phase relation of SnTe thin films connected to superconducting electrodes to form SQUID devices. Our results demonstrate that an assisting in-plane magnetic field component can induce 0-π-transitions. We attribute these findings to giant g-factors and large spin-orbit coupling of SnTe topological crystalline insulator, which provides a new platform for investigation of the interplay between spin-orbit physics and topological transport.
Erscheinungsjahr
2019
Zeitschriftentitel
Scientific reports
Band
9
Ausgabe
1
Art.-Nr.
1987
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2934060

Zitieren

Schonle J, Borisov K, Klett R, et al. Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs. Scientific reports. 2019;9(1): 1987.
Schonle, J., Borisov, K., Klett, R., Dyck, D., Balestro, F., Reiss, G., & Wernsdorfer, W. (2019). Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs. Scientific reports, 9(1), 1987. doi:10.1038/s41598-018-38008-1
Schonle, J., Borisov, K., Klett, R., Dyck, D., Balestro, F., Reiss, G., and Wernsdorfer, W. (2019). Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs. Scientific reports 9:1987.
Schonle, J., et al., 2019. Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs. Scientific reports, 9(1): 1987.
J. Schonle, et al., “Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs.”, Scientific reports, vol. 9, 2019, : 1987.
Schonle, J., Borisov, K., Klett, R., Dyck, D., Balestro, F., Reiss, G., Wernsdorfer, W.: Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs. Scientific reports. 9, : 1987 (2019).
Schonle, Joachim, Borisov, Kiril, Klett, Robin, Dyck, Denis, Balestro, Franck, Reiss, Günter, and Wernsdorfer, Wolfgang. “Field-Tunable 0-pi-Transitions in SnTe Topological Crystalline Insulator SQUIDs.”. Scientific reports 9.1 (2019): 1987.

51 References

Daten bereitgestellt von Europe PubMed Central.

Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices.
Mourik V, Zuo K, Frolov SM, Plissard SR, Bakkers EP, Kouwenhoven LP., Science 336(6084), 2012
PMID: 22499805
Zero-Bias Peaks and Splitting in an Al-InAs Nanowire Topological Superconductor As a Signature of Majorana Fermions
Das null., 2012
Quantum spin hall insulator state in HgTe quantum wells.
Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp LW, Qi XL, Zhang SC., Science 318(5851), 2007
PMID: 17885096
Spin Polarization of the Quantum Spin Hall Edge States
Brüne null., 2012
A topological Dirac insulator in a quantum spin Hall phase.
Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ., Nature 452(7190), 2008
PMID: 18432240
Observation of a Large-Gap Topological-Insulator Class with a Single Dirac Cone on the Surface
Xia null., 2009
Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3.
Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil JH, Osterwalder J, Patthey L, Fedorov AV, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ., Phys. Rev. Lett. 103(14), 2009
PMID: 19905585
Topological crystalline insulators.
Fu L., Phys. Rev. Lett. 106(10), 2011
PMID: 21469822
Topological crystalline insulators in the SnTe material class.
Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L., Nat Commun 3(), 2012
PMID: 22864575
Experimental Realization of a Topological Crystalline Insulator in SnTe
Tanaka null., 2012
Two Types of Dirac-Cone Surface States on the (111) Surface of the Topological Crystalline Insulator SnTe
Tanaka null., 2013
Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator
Fu L, Kane CL., 2008
Fault-Tolerant Quantum Computation by Anyons
Kitaev AY., 2003
Nonabelions in the Fractional Quantum Hall Effect
Moore G, Read N., 1991
New perspectives for Rashba spin-orbit coupling.
Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA., Nat Mater 14(9), 2015
PMID: 26288976
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu C, Zheng Z, Gong M, Xu Y, Mao L, Zou X, Guo G, Zhang C., Nat Commun 4(), 2013
PMID: 24162512
Superconductivity with Rashba spin-orbit coupling and magnetic field.
Loder F, Kampf AP, Kopp T., J Phys Condens Matter 25(36), 2013
PMID: 23934775
Topological Superconductivity in a Planar Josephson Junction
Pientka null., 2017
Controlled Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells
Hart null., 2016
Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.
Murani A, Kasumov A, Sengupta S, Kasumov YA, Volkov VT, Khodos II, Brisset F, Delagrange R, Chepelianskii A, Deblock R, Bouchiat H, Gueron S., Nat Commun 8(), 2017
PMID: 28677681

AUTHOR UNKNOWN, 0
Strong superconducting proximity effect in pb-bi(2)te(3) hybrid structures.
Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C, Lu L., Sci Rep 2(), 2012
PMID: 22468226
Phase-Sensitive SQUIDs Based on the 3D Topological Insulator HgTe
Maier null., 2015
Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices.
Klett R, Schonle J, Becker A, Dyck D, Borisov K, Rott K, Ramermann D, Buker B, Haskenhoff J, Krieft J, Hubner T, Reimer O, Shekhar C, Schmalhorst JM, Hutten A, Felser C, Wernsdorfer W, Reiss G., Nano Lett. 18(2), 2018
PMID: 29365261
Josephson φ-Junction in Nanowire Quantum Dots
Szombati null., 2016
Links
Likharev KKSW., 1979
Interplay of the Kondo effect and strong spin-orbit coupling in multihole ultraclean carbon nanotubes.
Cleuziou JP, N'Guyen NV, Florens S, Wernsdorfer W., Phys. Rev. Lett. 111(13), 2013
PMID: 24116802
Experimental evidence of a φ Josephson junction.
Sickinger H, Lipman A, Weides M, Mints RG, Kohlstedt H, Koelle D, Kleiner R, Goldobin E., Phys. Rev. Lett. 109(10), 2012
PMID: 23005318
Controllable 0–π Josephson Junctions Containing a Ferromagnetic Spin Valve
Gingrich null., 2016
Integer and Half-Integer Flux-Quantum Transitions in a Niobium-Iron Pnictide Loop
Chen C-T, Tsuei CC, Ketchen MB, Ren Z-A, Zhao ZX., 2010
Pairing Symmetry in Cuprate Superconductors
Tsuei CC, Kirtley JR., 2000
Topological Josephson φ-Junctions
Dolcini F, Houzet M, Meyer JS., 2015
Route to Topological Superconductivity via Magnetic Field Rotation.
Loder F, Kampf AP, Kopp T., Sci Rep 5(), 2015
PMID: 26477669
Proximity-Induced Triplet Superconductivity in Rashba Materials
Reeg CR, Maslov DL., 2015
Josephson current in low-dimensional proximity systems and the field effect.
Kresin VZ., Phys. Rev., B Condens. Matter 34(11), 1986
PMID: 9939439
Nonequilibrium AC Josephson Effect in Mesoscopic Nb-InAs-Nb Junctions
Lehnert null., 1999
Influence of Topological Edge States on the Properties of Al/BiSe/Al Hybrid Josephson Devices
Galletti null., 2014
Proximity DC SQUIDs in the Long-Junction Limit
Angers null., 2008

AUTHOR UNKNOWN, 0
Josephson Critical Current in a Long Mesoscopic S-N-S Junction
Dubos null., 2001
Controlled Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells (Supplementary Information
Hart null., 2016
4π-periodic Andreev bound states in a Dirac semimetal.
Li C, de Boer JC, de Ronde B, Ramankutty SV, van Heumen E, Huang Y, de Visser A, Golubov AA, Golden MS, Brinkman A., Nat Mater 17(10), 2018
PMID: 30224782
4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions.
Wiedenmann J, Bocquillon E, Deacon RS, Hartinger S, Herrmann O, Klapwijk TM, Maier L, Ames C, Brune C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H, Molenkamp LW., Nat Commun 7(), 2016
PMID: 26792013
Gapless Andreev bound states in the quantum spin Hall insulator HgTe.
Bocquillon E, Deacon RS, Wiedenmann J, Leubner P, Klapwijk TM, Brune C, Ishibashi K, Buhmann H, Molenkamp LW., Nat Nanotechnol 12(2), 2016
PMID: 27570940
Niobium and Niobium nitride SQUIDs Based on Anodized Nanobridges Made with an Atomic Force Microscope
Faucher null., 2002
Anomalous Josephson Effect Induced by Spin-Orbit Interaction and Zeeman Effect in Semiconductor Nanowires
Yokoyama T, Eto M, Nazarov YV., 2014
Splitting and 0-π Josephson Transitions from the Edelstein Effect in Quantum Spin Hall Insulators
Tkachov GGS., 2017

AUTHOR UNKNOWN, 0
Crystalline spin-orbit interaction and the Zeeman splitting in Pb1-x Sn x Te.
Hayasaka H, Fuseya Y., J Phys Condens Matter 28(31), 2016
PMID: 27301789
Energy bands, effective masses and g-factors of the lead salts and SnTe
Bernick RL, Kleinman L., 1970
Experimental evidence for topological surface states wrapping around a bulk SnTe crystal
Dybko K., 2017

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30760767
PubMed | Europe PMC

Suchen in

Google Scholar