Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles

Bajikar SS, Fuchs C, Roller A, Theis FJ, Janes KA (2014)
Proceedings of the National Academy of Sciences 111(5): E626-E635.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bajikar, Sameer S.; Fuchs, ChristianeUniBi ; Roller, Andreas; Theis, Fabian J.; Janes, Kevin A.
Abstract / Bemerkung
Regulated changes in gene expression underlie many biological processes, but globally profiling cell-to-cell variations in transcriptional regulation is problematic when measuring single cells. Transcriptome-wide identification of regulatory heterogeneities can be robustly achieved by randomly collecting small numbers of cells followed by statistical analysis. However, this stochastic-profiling approach blurs out the expression states of the individual cells in each pooled sample. Here, we show that the underlying distribution of single-cell regulatory states can be deconvolved from stochastic-profiling data through maximum-likelihood inference. Guided by the mechanisms of transcriptional regulation, we formulated plausible mixture models for cell-to-cell regulatory heterogeneity and maximized the resulting likelihood functions to infer model parameters. Inferences were validated both computationally and experimentally for different mixture models, which included regulatory states for multicellular function that were occupied by as few as 1 in 40 cells of the population. Importantly, when the method was extended to programs of heterogeneously coexpressed transcripts, we found that population-level inferences were much more accurate with pooled samples than with one-cell samples when the extent of sampling was limited. Our deconvolution method provides a means to quantify the heterogeneous regulation of molecular states efficiently and gain a deeper understanding of the heterogeneous execution of cell decisions.
Erscheinungsjahr
2014
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
111
Ausgabe
5
Seite(n)
E626-E635
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2934046

Zitieren

Bajikar SS, Fuchs C, Roller A, Theis FJ, Janes KA. Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences. 2014;111(5):E626-E635.
Bajikar, S. S., Fuchs, C., Roller, A., Theis, F. J., & Janes, K. A. (2014). Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences, 111(5), E626-E635. doi:10.1073/pnas.1311647111
Bajikar, Sameer S., Fuchs, Christiane, Roller, Andreas, Theis, Fabian J., and Janes, Kevin A. 2014. “Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles”. Proceedings of the National Academy of Sciences 111 (5): E626-E635.
Bajikar, S. S., Fuchs, C., Roller, A., Theis, F. J., and Janes, K. A. (2014). Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences 111, E626-E635.
Bajikar, S.S., et al., 2014. Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences, 111(5), p E626-E635.
S.S. Bajikar, et al., “Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles”, Proceedings of the National Academy of Sciences, vol. 111, 2014, pp. E626-E635.
Bajikar, S.S., Fuchs, C., Roller, A., Theis, F.J., Janes, K.A.: Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences. 111, E626-E635 (2014).
Bajikar, Sameer S., Fuchs, Christiane, Roller, Andreas, Theis, Fabian J., and Janes, Kevin A. “Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles”. Proceedings of the National Academy of Sciences 111.5 (2014): E626-E635.

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

In situ 10-cell RNA sequencing in tissue and tumor biopsy samples.
Singh S, Wang L, Schaff DL, Sutcliffe MD, Koeppel AF, Kim J, Onengut-Gumuscu S, Park KS, Zong H, Janes KA., Sci Rep 9(1), 2019
PMID: 30894605
Computational deconvolution of transcriptomics data from mixed cell populations.
Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K., Bioinformatics 34(11), 2018
PMID: 29351586
Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes.
Shah M, Smolko CM, Kinicki S, Chapman ZD, Brautigan DL, Janes KA., Mol Cell Proteomics 16(4 suppl 1), 2017
PMID: 28174228
Environment Tunes Propagation of Cell-to-Cell Variation in the Human Macrophage Gene Network.
Martins AJ, Narayanan M, Prüstel T, Fixsen B, Park K, Gottschalk RA, Lu Y, Andrews-Pfannkoch C, Lau WW, Wendelsdorf KV, Tsang JS., Cell Syst 4(4), 2017
PMID: 28365150
Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer.
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA., Dev Cell 43(4), 2017
PMID: 29161592
MEMO: multi-experiment mixture model analysis of censored data.
Geissen EM, Hasenauer J, Heinrich S, Hauf S, Theis FJ, Radde NE., Bioinformatics 32(16), 2016
PMID: 27153627
TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors.
Chitforoushzadeh Z, Ye Z, Sheng Z, LaRue S, Fry RC, Lauffenburger DA, Janes KA., Sci Signal 9(431), 2016
PMID: 27273097
Robust Inference of Cell-to-Cell Expression Variations from Single- and K-Cell Profiling.
Narayanan M, Martins AJ, Tsang JS., PLoS Comput Biol 12(7), 2016
PMID: 27438699
End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data.
Derr A, Yang C, Zilionis R, Sergushichev A, Blodgett DM, Redick S, Bortell R, Luban J, Harlan DM, Kadener S, Greiner DL, Klein A, Artyomov MN, Garber M., Genome Res 26(10), 2016
PMID: 27470110
Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development.
Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Torrenté L, Mar JC., PLoS Genet 11(8), 2015
PMID: 26288249
Cell-to-cell variability in cell death: can systems biology help us make sense of it all?
Xia X, Owen MS, Lee RE, Gaudet S., Cell Death Dis 5(), 2014
PMID: 24874733
Non-genetic heterogeneity caused by differential single-cell adhesion.
Wang CC, Janes KA., Cell Cycle 13(14), 2014
PMID: 24956151
Single cell transcriptional analysis reveals novel innate immune cell types.
Kippner LE, Kim J, Gibson G, Kemp ML., PeerJ 2(), 2014
PMID: 25024920

56 References

Daten bereitgestellt von Europe PubMed Central.

Characterizing heterogeneous cellular responses to perturbations.
Slack MD, Martinez ED, Wu LF, Altschuler SJ., Proc. Natl. Acad. Sci. U.S.A. 105(49), 2008
PMID: 19052231
Variability in gene expression underlies incomplete penetrance.
Raj A, Rifkin SA, Andersen E, van Oudenaarden A., Nature 463(7283), 2010
PMID: 20164922
Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities.
Singh DK, Ku CJ, Wichaidit C, Steininger RJ 3rd, Wu LF, Altschuler SJ., Mol. Syst. Biol. 6(), 2010
PMID: 20461076
Stochastic spineless expression creates the retinal mosaic for colour vision.
Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C., Nature 440(7081), 2006
PMID: 16525464
Multilineage transcriptional priming and determination of alternate hematopoietic cell fates.
Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H., Cell 126(4), 2006
PMID: 16923394
Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells.
Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES., Cell 146(4), 2011
PMID: 21854987
Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data.
Tyson DR, Garbett SP, Frick PL, Quaranta V., Nat. Methods 9(9), 2012
PMID: 22886092
An approach for extensibly profiling the molecular states of cellular subpopulations.
Loo LH, Lin HJ, Steininger RJ 3rd, Wang Y, Wu LF, Altschuler SJ., Nat. Methods 6(10), 2009
PMID: 19767759
Single-cell dissection of transcriptional heterogeneity in human colon tumors.
Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR., Nat. Biotechnol. 29(12), 2011
PMID: 22081019
Quantitative analysis of gene expression in a single cell by qPCR.
Taniguchi K, Kajiyama T, Kambara H., Nat. Methods 6(7), 2009
PMID: 19525960
Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum.
Bendall SC, Simonds EF, Qiu P, Amir el-AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP., Science 332(6030), 2011
PMID: 21551058
Imaging individual mRNA molecules using multiple singly labeled probes.
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S., Nat. Methods 5(10), 2008
PMID: 18806792
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.
Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD, Yamada RG, Ueda HR, Saitou M., Nucleic Acids Res. 34(5), 2006
PMID: 16547197
Single-cell transcriptional analysis of neuronal progenitors.
Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C., Neuron 38(2), 2003
PMID: 12718852
CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification.
Hashimshony T, Wagner F, Sher N, Yanai I., Cell Rep 2(3), 2012
PMID: 22939981
Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells.
Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R., Nat. Biotechnol. 30(8), 2012
PMID: 22820318
mRNA-Seq whole-transcriptome analysis of a single cell.
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA., Nat. Methods 6(5), 2009
PMID: 19349980
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells.
Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A., Nature 498(7453), 2013
PMID: 23685454
Quantification noise in single cell experiments.
Reiter M, Kirchner B, Muller H, Holzhauer C, Mann W, Pfaffl MW., Nucleic Acids Res. 39(18), 2011
PMID: 21745823
Sequencing technology does not eliminate biological variability.
Hansen KD, Wu Z, Irizarry RA, Leek JT., Nat. Biotechnol. 29(7), 2011
PMID: 21747377
Statistical mechanics approach to the sample deconvolution problem.
Riedel N, Berg J., Phys Rev E Stat Nonlin Soft Matter Phys 87(4), 2013
PMID: 23679457
Cell type-specific gene expression differences in complex tissues.
Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie T, Sarwal MM, Davis MM, Butte AJ., Nat. Methods 7(4), 2010
PMID: 20208531
Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples.
Gong T, Hartmann N, Kohane IS, Brinkmann V, Staedtler F, Letzkus M, Bongiovanni S, Szustakowski JD., PLoS ONE 6(11), 2011
PMID: 22110609
Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes.
Loo LH, Lin HJ, Singh DK, Lyons KM, Altschuler SJ, Wu LF., J. Cell Biol. 187(3), 2009
PMID: 19948481
Identifying single-cell molecular programs by stochastic profiling.
Janes KA, Wang CC, Holmberg KJ, Cabral K, Brugge JS., Nat. Methods 7(4), 2010
PMID: 20228812
Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR.
Warren L, Bryder D, Weissman IL, Quake SR., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17098862
Markovian modeling of gene-product synthesis
Peccoud J, Ycart B., 1995
Stochastic mRNA synthesis in mammalian cells.
Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S., PLoS Biol. 4(10), 2006
PMID: 17048983
Using gene expression noise to understand gene regulation.
Munsky B, Neuert G, van Oudenaarden A., Science 336(6078), 2012
PMID: 22499939
MAPKAP kinases - MKs - two's company, three's a crowd.
Gaestel M., Nat. Rev. Mol. Cell Biol. 7(2), 2006
PMID: 16421520
Log-normal distributions across the sciences: Keys and clues
Limpert E, Stahel WA, Abbt M., 2001
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS., Nature 441(7095), 2006
PMID: 16699522
Noise in protein expression scales with natural protein abundance.
Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E, Pilpel Y, Barkai N., Nat. Genet. 38(6), 2006
PMID: 16715097
Modelling glandular epithelial cancers in three-dimensional cultures.
Debnath J, Brugge JS., Nat. Rev. Cancer 5(9), 2005
PMID: 16148884
Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae.
Stewart-Ornstein J, Weissman JS, El-Samad H., Mol. Cell 45(4), 2012
PMID: 22365828
Normal morphogenesis of epithelial tissues and progression of epithelial tumors.
Wang CC, Jamal L, Janes KA., Wiley Interdiscip Rev Syst Biol Med 4(1), 2011
PMID: 21898857
Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.
Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D; Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N., Nat. Genet. 38(11), 2006
PMID: 17033622
Interferon regulatory factor expression in human breast cancer.
Doherty GM, Boucher L, Sorenson K, Lowney J., Ann. Surg. 233(5), 2001
PMID: 11323500
The clonal and mutational evolution spectrum of primary triple-negative breast cancers.
Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S., Nature 486(7403), 2012
PMID: 22495314
Frequent down-regulation of HIVEP2 in human breast cancer.
Fujii H, Gabrielson E, Takagaki T, Ohtsuji M, Ohtsuji N, Hino O., Breast Cancer Res. Treat. 91(2), 2005
PMID: 15868437
Activity of any class IA PI3K isoform can sustain cell proliferation and survival.
Foukas LC, Berenjeno IM, Gray A, Khwaja A, Vanhaesebroeck B., Proc. Natl. Acad. Sci. U.S.A. 107(25), 2010
PMID: 20534549
A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling.
Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM., Cell 125(4), 2006
PMID: 16647110
Probabilistic analysis of gene expression measurements from heterogeneous tissues.
Erkkila T, Lehmusvaara S, Ruusuvuori P, Visakorpi T, Shmulevich I, Lahdesmaki H., Bioinformatics 26(20), 2010
PMID: 20631160
Biomarker discovery in heterogeneous tissue samples -taking the in-silico deconfounding approach.
Repsilber D, Kern S, Telaar A, Walzl G, Black GF, Selbig J, Parida SK, Kaufmann SH, Jacobsen M., BMC Bioinformatics 11(), 2010
PMID: 20070912
Robust unmixing of tumor states in array comparative genomic hybridization data.
Tolliver D, Tsourakakis C, Subramanian A, Shackney S, Schwartz R., Bioinformatics 26(12), 2010
PMID: 20529894
Tumour evolution inferred by single-cell sequencing.
Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M., Nature 472(7341), 2011
PMID: 21399628
Gene expression and the myth of the average cell.
Levsky JM, Singer RH., Trends Cell Biol. 13(1), 2003
PMID: 12480334
The sum of log-normal probability distributions in scatter transmission systems
Fenton L., 1960
A simplex method for function minimization
Nelder JA, Mead R., 1965
Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion.
Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA., Cell 121(3), 2005
PMID: 15882617
A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen.
Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G, Piqani B, Eisenhaure TM, Luo B, Grenier JK, Carpenter AE, Foo SY, Stewart SA, Stockwell BR, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE., Cell 124(6), 2006
PMID: 16564017
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24449900
PubMed | Europe PMC

Suchen in

Google Scholar