Bayesian Blind Source Separation for Data with Network Structure

Illner K, Fuchs C, Theis FJ (2014)
Journal of Computational Biology 21(11): 855-865.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
; ;
Abstract / Bemerkung
In biology, more and more information about the interactions in regulatory systems becomes accessible, and this often leads to prior knowledge for recent data interpretations. In this work we focus on multivariate signaling data, where the structure of the data is induced by a known regulatory network. To extract signals of interest we assume a blind source separation (BSS) model, and we capture the structure of the source signals in terms of a Bayesian network. To keep the parameter space small, we consider stationary signals, and we introduce the new algorithm emGrade, where model parameters and source signals are estimated using expectation maximization. For network data, we find an improved estimation performance compared to other BSS algorithms, and the flexible Bayesian modeling enables us to deal with repeated and missing observation values. The main advantage of our method is the statistically interpretable likelihood, and we can use model selection criteria to determine the (in general unknown) number of source signals or decide between different given networks. In simulations we demonstrate the recovery of the source signals dependent on the graph structure and the dimensionality of the data.
Erscheinungsjahr
2014
Zeitschriftentitel
Journal of Computational Biology
Band
21
Ausgabe
11
Seite(n)
855-865
ISSN
1066-5277
eISSN
1557-8666
Page URI
https://pub.uni-bielefeld.de/record/2934027

Zitieren

Illner K, Fuchs C, Theis FJ. Bayesian Blind Source Separation for Data with Network Structure. Journal of Computational Biology. 2014;21(11):855-865.
Illner, K., Fuchs, C., & Theis, F. J. (2014). Bayesian Blind Source Separation for Data with Network Structure. Journal of Computational Biology, 21(11), 855-865. doi:10.1089/cmb.2014.0117
Illner, K., Fuchs, C., and Theis, F. J. (2014). Bayesian Blind Source Separation for Data with Network Structure. Journal of Computational Biology 21, 855-865.
Illner, K., Fuchs, C., & Theis, F.J., 2014. Bayesian Blind Source Separation for Data with Network Structure. Journal of Computational Biology, 21(11), p 855-865.
K. Illner, C. Fuchs, and F.J. Theis, “Bayesian Blind Source Separation for Data with Network Structure”, Journal of Computational Biology, vol. 21, 2014, pp. 855-865.
Illner, K., Fuchs, C., Theis, F.J.: Bayesian Blind Source Separation for Data with Network Structure. Journal of Computational Biology. 21, 855-865 (2014).
Illner, Katrin, Fuchs, Christiane, and Theis, Fabian J. “Bayesian Blind Source Separation for Data with Network Structure”. Journal of Computational Biology 21.11 (2014): 855-865.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25302766
PubMed | Europe PMC

Suchen in

Google Scholar