Identifying latent dynamic components in biological systems

Kondofersky I, Fuchs C, Theis FJ (2015)
IET Systems Biology 9(5): 193-203.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Kondofersky, Ivan; Fuchs, ChristianeUniBi ; Theis, Fabian J.
Abstract / Bemerkung
In computational systems biology, the general aim is to derive regulatory models from multivariate readouts, thereby generating predictions for novel experiments. In the past, many such models have been formulated for different biological applications. The authors consider the scenario where a given model fails to predict a set of observations with acceptable accuracy and ask the question whether this is because of the model lacking important external regulations. Real-world examples for such entities range from microRNAs to metabolic fluxes. To improve the prediction, they propose an algorithm to systematically extend the network by an additional latent dynamic variable which has an exogenous effect on the considered network. This variable's time course and influence on the other species is estimated in a two-step procedure involving spline approximation, maximum-likelihood estimation and model selection. Simulation studies show that such a hidden influence can successfully be inferred. The method is also applied to a signalling pathway model where they analyse real data and obtain promising results. Furthermore, the technique can be employed to detect incomplete network structures.
IET Systems Biology
Page URI


Kondofersky I, Fuchs C, Theis FJ. Identifying latent dynamic components in biological systems. IET Systems Biology. 2015;9(5):193-203.
Kondofersky, I., Fuchs, C., & Theis, F. J. (2015). Identifying latent dynamic components in biological systems. IET Systems Biology, 9(5), 193-203. doi:10.1049/iet-syb.2014.0013
Kondofersky, I., Fuchs, C., and Theis, F. J. (2015). Identifying latent dynamic components in biological systems. IET Systems Biology 9, 193-203.
Kondofersky, I., Fuchs, C., & Theis, F.J., 2015. Identifying latent dynamic components in biological systems. IET Systems Biology, 9(5), p 193-203.
I. Kondofersky, C. Fuchs, and F.J. Theis, “Identifying latent dynamic components in biological systems”, IET Systems Biology, vol. 9, 2015, pp. 193-203.
Kondofersky, I., Fuchs, C., Theis, F.J.: Identifying latent dynamic components in biological systems. IET Systems Biology. 9, 193-203 (2015).
Kondofersky, Ivan, Fuchs, Christiane, and Theis, Fabian J. “Identifying latent dynamic components in biological systems”. IET Systems Biology 9.5 (2015): 193-203.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Systems Pharmacology in Small Molecular Drug Discovery.
Zhou W, Wang Y, Lu A, Zhang G., Int J Mol Sci 17(2), 2016
PMID: 26901192
Inferring catalysis in biological systems.
Kondofersky I, Theis FJ, Fuchs C., IET Syst Biol 10(6), 2016
PMID: 27879475

46 References

Daten bereitgestellt von Europe PubMed Central.

Structural systems biology: modelling protein interactions.
Aloy P, Russell RB., Nat. Rev. Mol. Cell Biol. 7(3), 2006
PMID: 16496021
Computational systems biology.
Kitano H., Nature 420(6912), 2002
PMID: 12432404
Untangling statistical and biological models to understand network inference: the need for a genomics network ontology
AUTHOR UNKNOWN, Front. Genet. 5(), 2014
Canalization of development by microRNAs.
Hornstein E, Shomron N., Nat. Genet. 38 Suppl(), 2006
PMID: 16736020
A chemical platform for improved induction of human iPSCs.
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A, Ding S., Nat. Methods 6(11), 2009
PMID: 19838168
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA., Cell Stem Cell 4(4), 2009
PMID: 19341624

Model-based method for transcription factor target identification with limited data.
Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EE, Lawrence ND, Rattray M., Proc. Natl. Acad. Sci. U.S.A. 107(17), 2010
PMID: 20385836
The impact of latent confounders in directed network analysis in neuroscience.
Ramb R, Eichler M, Ing A, Thiel M, Weiller C, Grebogi C, Schwarzbauer C, Timmer J, Schelter B., Philos Trans A Math Phys Eng Sci 371(1997), 2013
PMID: 23858480
Estimation of linear, non-Gaussian causal models in the presence of confounding latent variables
semPLS: structural equation modeling using partial least squares
AUTHOR UNKNOWN, J. Stat. Softw. 48(3), 2012

AUTHOR UNKNOWN, Structural equation models (), 1998
Computational methodologies for modelling, analysis and simulation of signalling networks.
Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ, Downes CS, Dubitzky W., Brief. Bioinformatics 7(4), 2006
PMID: 17116646

AUTHOR UNKNOWN, Independent component analysis and signal separation (), 2009
Continuous representations of time-series gene expression data.
Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I., J. Comput. Biol. 10(3-4), 2003
PMID: 12935332

AUTHOR UNKNOWN, A practical guide to splines 27(), 2001


AUTHOR UNKNOWN, Functional data analysis (), 2005
Summing up the noise in gene networks.
Paulsson J., Nature 427(6973), 2004
PMID: 14749823
Noise in gene expression: origins, consequences, and control.
Raser JM, O'Shea EK., Science 309(5743), 2005
PMID: 16179466

AUTHOR UNKNOWN, Differential equations 3(), 1984

AUTHOR UNKNOWN, Mathematical methods of statistics 9(), 1945
Information and accuracy attainable in the estimation of statistical parameters
AUTHOR UNKNOWN, Bull. Calcutta Math. Soc. 37(3), 1945

AUTHOR UNKNOWN, The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods (), 1987

AUTHOR UNKNOWN, The theory of statistical inference 34(), 1971



AUTHOR UNKNOWN, The elements of statistical learning 2.1(), 2009

AUTHOR UNKNOWN, R: a language and environment for statistical computing (), 2011
STATs and gene regulation.
Darnell JE Jr., Science 277(5332), 1997
PMID: 9287210
Multiple tyrosine residues in the cytosolic domain of the erythropoietin receptor promote activation of STAT5.
Klingmuller U, Bergelson S, Hsiao JG, Lodish HF., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710869
Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling.
Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U., Proc. Natl. Acad. Sci. U.S.A. 100(3), 2003
PMID: 12552139


Stability analysis of a time delay model for the JAK-STAT signalling pathway
AUTHOR UNKNOWN, Series Biomech. 23(1), 2007

AUTHOR UNKNOWN, Computational cell biology 20(), 2002
Regression shrinkage and selection via the lasso
AUTHOR UNKNOWN, J. R. Stat. Soc. B, Methodol. 58(1), 1996


Model selection in systems and synthetic biology.
Kirk P, Thorne T, Stumpf MP., Curr. Opin. Biotechnol. 24(4), 2013
PMID: 23578462
Bayesian model selection validates a biokinetic model for zirconium processing in humans.
Schmidl D, Hug S, Li WB, Greiter MB, Theis FJ., BMC Syst Biol 6(), 2012
PMID: 22863152
Pattern recognition in bioinformatics.
de Ridder D, de Ridder J, Reinders MJ., Brief. Bioinformatics 14(5), 2013
PMID: 23559637
Designing and encoding models for synthetic biology.
Endler L, Rodriguez N, Juty N, Chelliah V, Laibe C, Li C, Le Novere N., J R Soc Interface 6 Suppl 4(), 2009
PMID: 19364720


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 26405143
PubMed | Europe PMC

Suchen in

Google Scholar