Model selection using limiting distributions of second-order blind source separation algorithms

Illner K, Miettinen J, Fuchs C, Taskinen S, Nordhausen K, Oja H, Theis FJ (2015)
Signal Processing 113: 95-103.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Illner, Katrin; Miettinen, Jari; Fuchs, ChristianeUniBi ; Taskinen, Sara; Nordhausen, Klaus; Oja, Hannu; Theis, Fabian J.
Abstract / Bemerkung
Signals, recorded over time, are often observed as mixtures of multiple source signals. To extract relevant information from such measurements one needs to determine the mixing coefficients. In case of weakly stationary time series with uncorrelated source signals, this separation can be achieved by jointly diagonalizing sample autocovariances at different lags, and several algorithms address this task. Often the mixing estimates contain close-to-zero entries and one wants to decide whether the corresponding source signals have a relevant impact on the observations or not. To address this question of model selection we consider the recently published second-order blind identification procedures SOBIdef and SOBIsym which provide limiting distributions of the mixing estimates. For the first time, such distributions enable informed decisions about the presence of second-order stationary source signals in the data. We consider a family of linear hypothesis tests and information criteria to perform model selection as second step after parameter estimation. In simulations we consider different time series models. We validate the model selection performance and demonstrate a good recovery of the true zero pattern of the mixing matrix.
Erscheinungsjahr
2015
Zeitschriftentitel
Signal Processing
Band
113
Seite(n)
95-103
ISSN
0165-1684
Page URI
https://pub.uni-bielefeld.de/record/2934024

Zitieren

Illner K, Miettinen J, Fuchs C, et al. Model selection using limiting distributions of second-order blind source separation algorithms. Signal Processing. 2015;113:95-103.
Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., & Theis, F. J. (2015). Model selection using limiting distributions of second-order blind source separation algorithms. Signal Processing, 113, 95-103. doi:10.1016/j.sigpro.2015.01.017
Illner, Katrin, Miettinen, Jari, Fuchs, Christiane, Taskinen, Sara, Nordhausen, Klaus, Oja, Hannu, and Theis, Fabian J. 2015. “Model selection using limiting distributions of second-order blind source separation algorithms”. Signal Processing 113: 95-103.
Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., and Theis, F. J. (2015). Model selection using limiting distributions of second-order blind source separation algorithms. Signal Processing 113, 95-103.
Illner, K., et al., 2015. Model selection using limiting distributions of second-order blind source separation algorithms. Signal Processing, 113, p 95-103.
K. Illner, et al., “Model selection using limiting distributions of second-order blind source separation algorithms”, Signal Processing, vol. 113, 2015, pp. 95-103.
Illner, K., Miettinen, J., Fuchs, C., Taskinen, S., Nordhausen, K., Oja, H., Theis, F.J.: Model selection using limiting distributions of second-order blind source separation algorithms. Signal Processing. 113, 95-103 (2015).
Illner, Katrin, Miettinen, Jari, Fuchs, Christiane, Taskinen, Sara, Nordhausen, Klaus, Oja, Hannu, and Theis, Fabian J. “Model selection using limiting distributions of second-order blind source separation algorithms”. Signal Processing 113 (2015): 95-103.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar