Inferring catalysis in biological systems

Kondofersky I, Theis FJ, Fuchs C (2016)
IET Systems Biology 10(6): 210-218.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor/in
; ;
Abstract / Bemerkung
In systems biology, one is often interested in the communication patterns between several species, such as genes, enzymes or proteins. These patterns become more recognisable when temporal experiments are performed. This temporal communication can be structured by reaction networks such as gene regulatory networks or signalling pathways. Mathematical modelling of data arising from such networks can reveal important details, thus helping to understand the studied system. In many cases, however, corresponding models still deviate from the observed data. This may be due to unknown but present catalytic reactions. From a modelling perspective, the question of whether a certain reaction is catalysed leads to a large increase of model candidates. For large networks the calibration of all possible models becomes computationally infeasible. We propose a method which determines a substantially reduced set of appropriate model candidates and identifies the catalyst of each reaction at the same time. This is incorporated in a multiple-step procedure which first extends the network by additional latent variables and subsequently identifies catalyst candidates using similarity analysis methods. Results from synthetic data examples suggest a good performance even for non-informative data with few observations. Applied on CD95 apoptotic pathway our method provides new insights into apoptosis regulation.
Erscheinungsjahr
Zeitschriftentitel
IET Systems Biology
Band
10
Ausgabe
6
Seite(n)
210-218
ISSN
eISSN
PUB-ID

Zitieren

Kondofersky I, Theis FJ, Fuchs C. Inferring catalysis in biological systems. IET Systems Biology. 2016;10(6):210-218.
Kondofersky, I., Theis, F. J., & Fuchs, C. (2016). Inferring catalysis in biological systems. IET Systems Biology, 10(6), 210-218. doi:10.1049/iet-syb.2015.0087
Kondofersky, I., Theis, F. J., and Fuchs, C. (2016). Inferring catalysis in biological systems. IET Systems Biology 10, 210-218.
Kondofersky, I., Theis, F.J., & Fuchs, C., 2016. Inferring catalysis in biological systems. IET Systems Biology, 10(6), p 210-218.
I. Kondofersky, F.J. Theis, and C. Fuchs, “Inferring catalysis in biological systems”, IET Systems Biology, vol. 10, 2016, pp. 210-218.
Kondofersky, I., Theis, F.J., Fuchs, C.: Inferring catalysis in biological systems. IET Systems Biology. 10, 210-218 (2016).
Kondofersky, Ivan, Theis, Fabian J., and Fuchs, Christiane. “Inferring catalysis in biological systems”. IET Systems Biology 10.6 (2016): 210-218.

28 References

Daten bereitgestellt von Europe PubMed Central.

Structural systems biology: modelling protein interactions.
Aloy P, Russell RB., Nat. Rev. Mol. Cell Biol. 7(3), 2006
PMID: 16496021
Computational systems biology.
Kitano H., Nature 420(6912), 2002
PMID: 12432404
When the optimal is not the best: parameter estimation in complex biological models.
Fernandez Slezak D, Suarez C, Cecchi GA, Marshall G, Stolovitzky G., PLoS ONE 5(10), 2010
PMID: 21049094
Network biology: understanding the cell's functional organization.
Barabasi AL, Oltvai ZN., Nat. Rev. Genet. 5(2), 2004
PMID: 14735121
The large-scale organization of metabolic networks.
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL., Nature 407(6804), 2000
PMID: 11034217
BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novere N, Laibe C., BMC Syst Biol 4(), 2010
PMID: 20587024
Notch signaling: cell fate control and signal integration in development.
Artavanis-Tsakonas S, Rand MD, Lake RJ., Science 284(5415), 1999
PMID: 10221902
Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways.
Vogel V, Sheetz MP., Curr. Opin. Cell Biol. 21(1), 2009
PMID: 19217273
Immunoblotting and immunodetection
AUTHOR UNKNOWN, Curr. Protoc. Cell Biol. 10(), 2011
Computational methodologies for modelling, analysis and simulation of signalling networks.
Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ, Downes CS, Dubitzky W., Brief. Bioinformatics 7(4), 2006
PMID: 17116646

AUTHOR UNKNOWN, The Elements of Statistical Learning, (), 2001

AUTHOR UNKNOWN, Systems Biology of Apoptosis, (), 2013
Identifying latent dynamic components in biological systems.
Kondofersky I, Fuchs C, Theis FJ., IET Syst Biol 9(5), 2015
PMID: 26405143

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, Chemical kinetics and catalysis (), 2001

AUTHOR UNKNOWN, R: a language and environment for statistical computing (), 2011
fda: functional data analysis
AUTHOR UNKNOWN, 2009
Solving differential equations in R: package deSolve
AUTHOR UNKNOWN, J. Stat. Softw. 33(), 2010
Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling.
Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH., J. Biol. Chem. 282(18), 2007
PMID: 17347143
Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor
AUTHOR UNKNOWN, EMBO J. 14(22), 1995
Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL.
Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN., J. Cell Biol. 190(3), 2010
PMID: 20696707
Dynamics within the CD95 death-inducing signaling complex decide life and death of cells.
Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R., Mol. Syst. Biol. 6(), 2010
PMID: 20212524
What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models
AUTHOR UNKNOWN, Psychosom. Med. 66(3), 2004
Reduction of a biochemical model with preservation of its basic dynamic properties.
Dano S, Madsen MF, Schmidt H, Cedersund G., FEBS J. 273(21), 2006
PMID: 17010168

AUTHOR UNKNOWN, 0
Reduction of dynamical biochemical reaction networks in computational biology
AUTHOR UNKNOWN, 2012

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27879475
PubMed | Europe PMC

Suchen in

Google Scholar