A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients

Seyednasrollah F, Koestler DC, Wang T, Piccolo SR, Vega R, Greiner R, Fuchs C, Gofer E, Kumar L, Wolfinger RD, Winner KK, et al. (2017)
JCO Clinical Cancer Informatics: 1-15.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
PurposeDocetaxel has a demonstrated survival benefit for patients with metastatic castration-resistantprostate cancer (mCRPC); however, 10% to 20% of patients discontinue docetaxel prematurely be-cause of toxicity-induced adverse events, and the management of risk factors for toxicity remains achallenge.PatientsandMethodsThecomparatorarmsoffourphaseIIIclinicaltrialsinfirst-linemCRPCwerecollected,annotated, and compiled, with a total of 2,070 patients. Early discontinuation was defined as treatmentstoppagewithin3monthsasaresultofadversetreatmenteffects;10%ofpatientsdiscontinuedtreatment.Wedesigned an open-data, crowd-sourced DREAM Challenge for developing models with which to predict earlydiscontinuation of docetaxel treatment. Clinical features for all four trials and outcomes for three of the fourtrials were made publicly available, with the outcomes of the fourth trial held back for unbiased modelevaluation. Challenge participants from around the world trained models and submitted their predictions.Area under the precision-recall curve was the primary metric used for performance assessment.ResultsIn total, 34 separate teams submitted predictions. Seven models with statistically similar areaunderprecision-recallcurves(Bayesfactor£3)outperformedallothermodels.Apostchallengeanalysisofrisk prediction using these seven models revealed three patient subgroups: high risk, low risk, or dis-cordant risk. Early discontinuation events were two times higher in the high-risk subgroup compared withthe low-risk subgroup. Simulation studies demonstrated that use of patient discontinuation predictionmodels could reduce patient enrollment in clinical trials without the loss of statistical power.ConclusionThisworkrepresentsasuccessfulcollaborationbetween34internationalteamsthatleveragedopen clinical trial data. Our results demonstrate that routinely collected clinical features can be used toidentify patients with mCRPC who are likely to discontinue treatment because of adverse events andestablishes a robust benchmark with implications for clinical trial design.
Erscheinungsjahr
Zeitschriftentitel
JCO Clinical Cancer Informatics
Seite(n)
1-15
eISSN
PUB-ID

Zitieren

Seyednasrollah F, Koestler DC, Wang T, et al. A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients. JCO Clinical Cancer Informatics. 2017:1-15.
Seyednasrollah, F., Koestler, D. C., Wang, T., Piccolo, S. R., Vega, R., Greiner, R., Fuchs, C., et al. (2017). A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients. JCO Clinical Cancer Informatics, 1-15. doi:10.1200/CCI.17.00018
Seyednasrollah, F., Koestler, D. C., Wang, T., Piccolo, S. R., Vega, R., Greiner, R., Fuchs, C., Gofer, E., Kumar, L., Wolfinger, R. D., et al. (2017). A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients. JCO Clinical Cancer Informatics, 1-15.
Seyednasrollah, F., et al., 2017. A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients. JCO Clinical Cancer Informatics, , p 1-15.
F. Seyednasrollah, et al., “A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients”, JCO Clinical Cancer Informatics, 2017, pp. 1-15.
Seyednasrollah, F., Koestler, D.C., Wang, T., Piccolo, S.R., Vega, R., Greiner, R., Fuchs, C., Gofer, E., Kumar, L., Wolfinger, R.D., Winner, K.K., Bare, C., Neto, E.C., Yu, T., Shen, L., Abdallah, K., Norman, T., Stolovitzky, G., Soule, H.R., Sweeney, C.J., Ryan, C., Scher, H.I., Sartor, O., Elo, L.L., Zhou, F.L., Guinney, J., Costello, J.C.: A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients. JCO Clinical Cancer Informatics. 1-15 (2017).
Seyednasrollah, Fatemeh, Koestler, Devin C., Wang, Tao, Piccolo, Stephen R., Vega, Robert, Greiner, Russel, Fuchs, Christiane, Gofer, Eyal, Kumar, Luke, Wolfinger, Russell D., Winner, Kimberly Kanigel, Bare, Chris, Neto, Elias Chaibub, Yu, Thomas, Shen, Liji, Abdallah, Kald, Norman, Thea, Stolovitzky, Gustavo, Soule, Howard R., Sweeney, Christopher J., Ryan, Charles, Scher, Howard I., Sartor, Oliver, Elo, Laura L., Zhou, Fang Liz, Guinney, Justin, and Costello, James C. “A DREAM challenge to build prediction models for short-term discontinuation of docetaxel in metastatic castration-resistant prostate cancer patients”. JCO Clinical Cancer Informatics (2017): 1-15.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Remote sensing tree classification with a multilayer perceptron.
Sumsion GR, Bradshaw MS, Hill KT, Pinto LDG, Piccolo SR., PeerJ 7(), 2019
PMID: 30842894

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30657384
PubMed | Europe PMC

Suchen in

Google Scholar