Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations
Hausenblas E, Randrianasolo TA, Thalhammer M (2019)
Journal of Computational and Applied Mathematics 364: 112335.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
hausenblas2019theoritical.pdf
28.37 MB
Autor*in
Hausenblas, Erika;
Randrianasolo, Tsiry AvisoaUniBi ;
Thalhammer, Mechthild
Einrichtung
Abstract / Bemerkung
Mathematical models based on systems of reaction-diffusion equations provide fundamental
tools for the description and investigation of various processes in biology, biochemistry, and chemistry;
in specific situations, an appealing characteristic of the arising nonlinear partial differential equations is
the formation of patterns, reminiscent of those found in nature. The deterministic Gray–Scott equations
constitute an elementary two-component system that describes autocatalytic reaction processes; depending
on the choice of the specific parameters, complex patterns of spirals, waves, stripes, or spots appear.
In the derivation of a macroscopic model such as the deterministic Gray–Scott equations from basic physical principles, certain aspects of microscopic dynamics, e.g. fluctuations of molecules, are disregarded; an
expedient mathematical approach that accounts for significant microscopic effects relies on the incorporation
of stochastic processes and the consideration of stochastic partial differential equations.
The present work is concerned with a theoretical and numerical study of the stochastic Gray–Scott
equations driven by independent spatially time-homogeneous Wiener processes. Under suitable regularity
assumptions on the prescribed initial states, existence and uniqueness of the solution processes is proven.
Numerical simulations based on the application of a time-adaptive first-order operator splitting method and
the fast Fourier transform illustrate the formation of patterns in the deterministic case and their variation
under the influence of stochastic noise
Stichworte
Mathematical and theoretical biology;
Mathematical biochemistry;
Mathematical chemistry;
Reaction-diffusion systems;
Gray–Scott equations;
Turing patterns;
Stochastic partial differential equations;
Wiener processes;
Numerical approximation;
Operator splitting methods;
Fast Fourier transform.
Erscheinungsjahr
2019
Zeitschriftentitel
Journal of Computational and Applied Mathematics
Band
364
Art.-Nr.
112335
Urheberrecht / Lizenzen
ISSN
0377-0427
Page URI
https://pub.uni-bielefeld.de/record/2934005
Zitieren
Hausenblas E, Randrianasolo TA, Thalhammer M. Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations. Journal of Computational and Applied Mathematics. 2019;364: 112335.
Hausenblas, E., Randrianasolo, T. A., & Thalhammer, M. (2019). Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations. Journal of Computational and Applied Mathematics, 364, 112335. doi:10.1016/j.cam.2019.06.051
Hausenblas, Erika, Randrianasolo, Tsiry Avisoa, and Thalhammer, Mechthild. 2019. “Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations”. Journal of Computational and Applied Mathematics 364: 112335.
Hausenblas, E., Randrianasolo, T. A., and Thalhammer, M. (2019). Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations. Journal of Computational and Applied Mathematics 364:112335.
Hausenblas, E., Randrianasolo, T.A., & Thalhammer, M., 2019. Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations. Journal of Computational and Applied Mathematics, 364: 112335.
E. Hausenblas, T.A. Randrianasolo, and M. Thalhammer, “Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations”, Journal of Computational and Applied Mathematics, vol. 364, 2019, : 112335.
Hausenblas, E., Randrianasolo, T.A., Thalhammer, M.: Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations. Journal of Computational and Applied Mathematics. 364, : 112335 (2019).
Hausenblas, Erika, Randrianasolo, Tsiry Avisoa, and Thalhammer, Mechthild. “Theoretical study and numerical simulation of pattern formation in the deterministic and stochastic Gray--Scott equations”. Journal of Computational and Applied Mathematics 364 (2019): 112335.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 3.0 Unported (CC BY 3.0):
Volltext(e)
Name
hausenblas2019theoritical.pdf
28.37 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-07-25T07:16:11Z
MD5 Prüfsumme
8dfbea8f0b090f82809c499d2ce975d9
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in