Solvability of nonlocal systems related to peridynamics
Kaßmann M, Mengesha T, Scott J (2019)
Communications on Pure and Applied Analysis 18(3): 1303-1332.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaßmann, MoritzUniBi ;
Mengesha, Tadele;
Scott, James
Einrichtung
Abstract / Bemerkung
In this work, we study the Dirichlet problem associated with a strongly coupled system of nonlocal equations. The system of equations comes from a linearization of a model of peridynamics, a nonlocal model of elasticity. It is a nonlocal analogue of the Navier-Lame system of classical elasticity. The leading operator is an integro-differential operator characterized by a distinctive matrix kernel which is used to couple differences of components of a vector field. The paper's main contributions are proving well-posedness of the system of equations and demonstrating optimal local Sobolev regularity of solutions. We apply Hilbert space techniques for well-posedness. The result holds for systems associated with kernels that give rise to non-symmetric bilinear forms. The regularity result holds for systems with symmetric kernels that may be supported only on a cone. For some specific kernels associated energy spaces are shown to coincide with standard fractional Sobolev spaces.
Erscheinungsjahr
2019
Zeitschriftentitel
Communications on Pure and Applied Analysis
Band
18
Ausgabe
3
Seite(n)
1303-1332
ISSN
1534-0392
eISSN
1553-5258
Page URI
https://pub.uni-bielefeld.de/record/2933905
Zitieren
Kaßmann M, Mengesha T, Scott J. Solvability of nonlocal systems related to peridynamics. Communications on Pure and Applied Analysis . 2019;18(3):1303-1332.
Kaßmann, M., Mengesha, T., & Scott, J. (2019). Solvability of nonlocal systems related to peridynamics. Communications on Pure and Applied Analysis , 18(3), 1303-1332. https://doi.org/10.3934/cpaa.2019063
Kaßmann, Moritz, Mengesha, Tadele, and Scott, James. 2019. “Solvability of nonlocal systems related to peridynamics”. Communications on Pure and Applied Analysis 18 (3): 1303-1332.
Kaßmann, M., Mengesha, T., and Scott, J. (2019). Solvability of nonlocal systems related to peridynamics. Communications on Pure and Applied Analysis 18, 1303-1332.
Kaßmann, M., Mengesha, T., & Scott, J., 2019. Solvability of nonlocal systems related to peridynamics. Communications on Pure and Applied Analysis , 18(3), p 1303-1332.
M. Kaßmann, T. Mengesha, and J. Scott, “Solvability of nonlocal systems related to peridynamics”, Communications on Pure and Applied Analysis , vol. 18, 2019, pp. 1303-1332.
Kaßmann, M., Mengesha, T., Scott, J.: Solvability of nonlocal systems related to peridynamics. Communications on Pure and Applied Analysis . 18, 1303-1332 (2019).
Kaßmann, Moritz, Mengesha, Tadele, and Scott, James. “Solvability of nonlocal systems related to peridynamics”. Communications on Pure and Applied Analysis 18.3 (2019): 1303-1332.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in