netReg: network-regularized linear models for biological association studies

Dirmeier S, Fuchs C, Mueller NS, Theis FJ (2017)
Bioinformatics 34(5): 896-898.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dirmeier, Simon; Fuchs, ChristianeUniBi ; Mueller, Nikola S; Theis, Fabian J
Abstract / Bemerkung
Modelling biological associations or dependencies using linear regression is often complicated when the analyzed data-sets are high-dimensional and less observations than variables are available (n ≪ p). For genomic data-sets penalized regression methods have been applied settling this issue. Recently proposed regression models utilize prior knowledge on dependencies, e.g. in the form of graphs, arguing that this information will lead to more reliable estimates for regression coefficients. However, none of the proposed models for multivariate genomic response variables have been implemented as a computationally efficient, freely available library. In this paper we propose netReg, a package for graph-penalized regression models that use large networks and thousands of variables. netReg incorporates a priori generated biological graph information into linear models yielding sparse or smooth solutions for regression coefficients.
Erscheinungsjahr
2017
Zeitschriftentitel
Bioinformatics
Band
34
Ausgabe
5
Seite(n)
896-898
ISSN
1367-4803
eISSN
1460-2059
Page URI
https://pub.uni-bielefeld.de/record/2933892

Zitieren

Dirmeier S, Fuchs C, Mueller NS, Theis FJ. netReg: network-regularized linear models for biological association studies. Bioinformatics. 2017;34(5):896-898.
Dirmeier, S., Fuchs, C., Mueller, N. S., & Theis, F. J. (2017). netReg: network-regularized linear models for biological association studies. Bioinformatics, 34(5), 896-898. doi:10.1093/bioinformatics/btx677
Dirmeier, Simon, Fuchs, Christiane, Mueller, Nikola S, and Theis, Fabian J. 2017. “netReg: network-regularized linear models for biological association studies”. Bioinformatics 34 (5): 896-898.
Dirmeier, S., Fuchs, C., Mueller, N. S., and Theis, F. J. (2017). netReg: network-regularized linear models for biological association studies. Bioinformatics 34, 896-898.
Dirmeier, S., et al., 2017. netReg: network-regularized linear models for biological association studies. Bioinformatics, 34(5), p 896-898.
S. Dirmeier, et al., “netReg: network-regularized linear models for biological association studies”, Bioinformatics, vol. 34, 2017, pp. 896-898.
Dirmeier, S., Fuchs, C., Mueller, N.S., Theis, F.J.: netReg: network-regularized linear models for biological association studies. Bioinformatics. 34, 896-898 (2017).
Dirmeier, Simon, Fuchs, Christiane, Mueller, Nikola S, and Theis, Fabian J. “netReg: network-regularized linear models for biological association studies”. Bioinformatics 34.5 (2017): 896-898.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Prediction of response to anti-cancer drugs becomes robust via network integration of molecular data.
Franco M, Jeggari A, Peuget S, Böttger F, Selivanova G, Alexeyenko A., Sci Rep 9(1), 2019
PMID: 30787419

21 References

Daten bereitgestellt von Europe PubMed Central.

KeyPathwayMiner: detecting case-specific biological pathways using expression data
Alcaraz, Internet Math 7(), 2011
Network enrichment analysis: extension of gene-set enrichment analysis to gene networks.
Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, Lehtio J, Pawitan Y., BMC Bioinformatics 13(), 2012
PMID: 22966941
Genetic interactions between polymorphisms that affect gene expression in yeast
Brem, Nature 436(), 2005
Graph-regularized dual Lasso for robust eQTL mapping.
Cheng W, Zhang X, Guo Z, Shi Y, Wang W., Bioinformatics 30(12), 2014
PMID: 24931977
Pathwise coordinate optimization
Friedman, Ann. Appl. Stat 1(), 2007
Regularization paths for generalized linear models via coordinate descent
Friedman, J. Stat. Softw 33(), 2010
Network-based penalized regression with application to genomic data.
Kim S, Pan W, Shen X., Biometrics 69(3), 2013
PMID: 23822182
Dlib-ml: A machine learning toolkit
King, J. Mach. Learn. Res 10(), 2009
WGCNA: an R package for weighted correlation network analysis
Langfelder, BMC Bioinf 9(), 2008
Variable selection and regression analysis for graph-structured covariates with an application to genomics
Li, Ann. Appl. Stat 4(), 2010

Li, 2015

Li, 2015

Powell, 2009

Sanderson, 2010
Multiple locus linkage analysis of genomewide expression in yeast
Storey, PLoS Biol 3(), 2005
Regression shrinkage and selection via the lasso
Tibshirani, J. R. Stat. Soc. Ser. B 58(), 1996
DegreeCox - a network-based regularization method for survival analysis.
Verissimo A, Oliveira AL, Sagot MF, Vinga S., BMC Bioinformatics 17(Suppl 16), 2016
PMID: 28105908

Xianyi, 2012

Zhao, 2016
Regularization and variable selection via the elastic net
Zou, J. R. Stat. Soc. Ser. B 67(), 2005
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29077797
PubMed | Europe PMC

Suchen in

Google Scholar