Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities

Pieschner S, Fuchs C (2018)
arXiv:1806.02429.

Preprint | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
;
Abstract / Bemerkung
A powerful tool in many areas of science, diffusion processes model random dynamical systems in continuous time. Parameters can be estimated from time-discretely observed diffusion processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically approximate the transition densities of the process numerically, both for calculating the posterior densities and proposing auxiliary data. Here, the Euler-Maruyama scheme is the standard approximation technique. However, the MCMC method is computationally expensive. Using higher-order approximations may speed it up. Yet, the specific such implementation and benefit remain unclear. Hence, we investigate the utilisation and usefulness of higher-order approximations on the example of the Milstein scheme. Our study shows that the combination of the Milstein approximation and the well-known modified bridge proposal yields good estimation results. However, this proceeding is computationally more expensive, introduces additional numerical challenges and can be applied to multidimensional processes only with impractical restrictions.
Erscheinungsjahr
2018
Zeitschriftentitel
arXiv:1806.02429
Seite(n)
28
Page URI
https://pub.uni-bielefeld.de/record/2933885

Zitieren

Pieschner S, Fuchs C. Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities. arXiv:1806.02429. 2018.
Pieschner, S., & Fuchs, C. (2018). Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities. arXiv:1806.02429
Pieschner, S., and Fuchs, C. (2018). Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities. arXiv:1806.02429.
Pieschner, S., & Fuchs, C., 2018. Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities. arXiv:1806.02429.
S. Pieschner and C. Fuchs, “Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities”, arXiv:1806.02429, 2018.
Pieschner, S., Fuchs, C.: Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities. arXiv:1806.02429. (2018).
Pieschner, Susanne, and Fuchs, Christiane. “Bayesian Inference for Diffusion Processes. Using Higher-Order Approximations for Transition Densities”. arXiv:1806.02429 (2018).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1806.02429

Suchen in

Google Scholar