Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction.

Drevon D, Gorlin M, Chernev P, Xi L, Dau H, Aziz-Lange K (2019)
Scientific reports 9(1): 1532.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Drevon, Dorian; Gorlin, Mikaela; Chernev, Petko; Xi, Lifei; Dau, Holger; Aziz-Lange, KathrinUniBi
Abstract / Bemerkung
In-situ X-ray absorption spectroscopy (XAS) at the oxygen K-edge was used to investigate the role of oxygen during the oxygen evolution reaction (OER) in an electrodeposited Ni-Fe(OxHy) electrocatalyst in alkaline pH. We show the rise of a pre-peak feature at 529 eV in the O K-edge spectra, correlated to the appearance of a shoulder at the Ni L3-edge and formation of oxidized Ni3+/4+-O. Then, for the first time, we track the spectral changes in a dynamic fashion in both the soft and hard X-ray regimes during cyclic voltammetry (in situ CV-XAS) to obtain a fine-tuned resolution of the potential-related changes. The pre-peak feature at the O K-edge likely signifies formation of an electron deficient oxygen site. The electrophilic oxygen species appears and disappears reversibly in correlation with the Ni2+ ↔ Ni3+/4+ process, and persists during OER catalysis as long the metal is oxidized. Our study provides new insight into OER electrocatalysis: Before onset of the O-O bond formation step, the catalytic oxyhydroxide has accumulated electron deficiencies by both, oxidation of transition metal ions and formation of partially oxidized oxygen sites.
Erscheinungsjahr
2019
Zeitschriftentitel
Scientific reports
Band
9
Ausgabe
1
Art.-Nr.
1532
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2933680

Zitieren

Drevon D, Gorlin M, Chernev P, Xi L, Dau H, Aziz-Lange K. Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific reports. 2019;9(1): 1532.
Drevon, D., Gorlin, M., Chernev, P., Xi, L., Dau, H., & Aziz-Lange, K. (2019). Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific reports, 9(1), 1532. doi:10.1038/s41598-018-37307-x
Drevon, Dorian, Gorlin, Mikaela, Chernev, Petko, Xi, Lifei, Dau, Holger, and Aziz-Lange, Kathrin. 2019. “Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction.”. Scientific reports 9 (1): 1532.
Drevon, D., Gorlin, M., Chernev, P., Xi, L., Dau, H., and Aziz-Lange, K. (2019). Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific reports 9:1532.
Drevon, D., et al., 2019. Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific reports, 9(1): 1532.
D. Drevon, et al., “Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction.”, Scientific reports, vol. 9, 2019, : 1532.
Drevon, D., Gorlin, M., Chernev, P., Xi, L., Dau, H., Aziz-Lange, K.: Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction. Scientific reports. 9, : 1532 (2019).
Drevon, Dorian, Gorlin, Mikaela, Chernev, Petko, Xi, Lifei, Dau, Holger, and Aziz-Lange, Kathrin. “Uncovering The Role of Oxygen in Ni-Fe(OxHy) Electrocatalysts using In situ Soft X-ray Absorption Spectroscopy during the Oxygen Evolution Reaction.”. Scientific reports 9.1 (2019): 1532.

32 References

Daten bereitgestellt von Europe PubMed Central.

Powering the planet: chemical challenges in solar energy utilization.
Lewis NS, Nocera DG., Proc. Natl. Acad. Sci. U.S.A. 103(43), 2006
PMID: 17043226
Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.
Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Alonso-Mori R, Davis RC, Bargar JR, Norskov JK, Nilsson A, Bell AT., J. Am. Chem. Soc. 137(3), 2015
PMID: 25562406
Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe⁴⁺ by Mossbauer Spectroscopy.
Chen JY, Dang L, Liang H, Bi W, Gerken JB, Jin S, Alp EE, Stahl SS., J. Am. Chem. Soc. 137(48), 2015
PMID: 26601790
Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.
Gorlin M, Ferreira de Araujo J, Schmies H, Bernsmeier D, Dresp S, Gliech M, Jusys Z, Chernev P, Kraehnert R, Dau H, Strasser P., J. Am. Chem. Soc. 139(5), 2017
PMID: 28080038
Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity.
Stevens MB, Trang CDM, Enman LJ, Deng J, Boettcher SW., J. Am. Chem. Soc. 139(33), 2017
PMID: 28789520
In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.
Trzesniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MT, Smith WA., J. Am. Chem. Soc. 137(48), 2015
PMID: 26544169
Covalency in metal-oxygen multiple bonds evaluated using oxygen K-edge spectroscopy and electronic structure theory.
Minasian SG, Keith JM, Batista ER, Boland KS, Bradley JA, Daly SR, Kozimor SA, Lukens WW, Martin RL, Nordlund D, Seidler GT, Shuh DK, Sokaras D, Tyliszczak T, Wagner GL, Weng TC, Yang P., J. Am. Chem. Soc. 135(5), 2013
PMID: 23351138
Structure-activity correlations in a nickel-borate oxygen evolution catalyst.
Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG., J. Am. Chem. Soc. 134(15), 2012
PMID: 22417283
A soft XAS transmission cell for operando studies.
Schwanke C, Xi L, Lange KM., J Synchrotron Radiat 23(Pt 6), 2016
PMID: 27787244
Nanobubbles at Hydrophilic Particle-Water Interfaces.
Pan G, He G, Zhang M, Zhou Q, Tyliszczak T, Tai R, Guo J, Bi L, Wang L, Zhang H., Langmuir 32(43), 2016
PMID: 27180638
The structure of the first coordination shell in liquid water.
Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LG, Nilsson A., Science 304(5673), 2004
PMID: 15060287
A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode.
Schreck S, Gavrila G, Weniger C, Wernet P., Rev Sci Instrum 82(10), 2011
PMID: 22047274
Direct contact versus solvent-shared ion pairs in NiCl2 electrolytes monitored by multiplet effects at Ni(II) L edge X-ray absorption.
Aziz EF, Eisebitt S, de Groot F, Chiou JW, Dong C, Guo J, Eberhardt W., J Phys Chem B 111(17), 2007
PMID: 17428088
Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
Trotochaud L, Young SL, Ranney JK, Boettcher SW., J. Am. Chem. Soc. 136(18), 2014
PMID: 24779732
Origin of the pre-peak features in the oxygen K-edge x-ray absorption spectra of LaFeO₃ and LaMnO₃ studied by Ga substitution of the transition metal ion.
Lafuerza S, Subias G, Garcia J, Di Matteo S, Blasco J, Cuartero V, Natoli CR., J Phys Condens Matter 23(32), 2011
PMID: 21795764
An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H., J. Am. Chem. Soc. 135(23), 2013
PMID: 23701670
Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption.
Zheng X, Zhang B, De Luna P, Liang Y, Comin R, Voznyy O, Han L, Garcia de Arquer FP, Liu M, Dinh CT, Regier T, Dynes JJ, He S, Xin HL, Peng H, Prendergast D, Du X, Sargent EH., Nat Chem 10(2), 2017
PMID: 29359759
Origin of electrochromism in high-performing nanocomposite nickel oxide.
Lin F, Nordlund D, Weng TC, Sokaras D, Jones KM, Reed RB, Gillaspie DT, Weir DG, Moore RG, Dillon AC, Richards RM, Engtrakul C., ACS Appl Mater Interfaces 5(9), 2013
PMID: 23547738
Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.
Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y., Nat Chem 3(7), 2011
PMID: 21697876
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films.
Li N, Bediako DK, Hadt RG, Hayes D, Kempa TJ, von Cube F, Bell DC, Chen LX, Nocera DG., Proc. Natl. Acad. Sci. U.S.A. 114(7), 2017
PMID: 28137835
L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of differential orbital covalency.
Wasinger EC, de Groot FM, Hedman B, Hodgson KO, Solomon EI., J. Am. Chem. Soc. 125(42), 2003
PMID: 14558838
Reactive oxygen species in iridium-based OER catalysts.
Pfeifer V, Jones TE, Wrabetz S, Massue C, Velasco Velez JJ, Arrigo R, Scherzer M, Piccinin S, Havecker M, Knop-Gericke A, Schlogl R., Chem Sci 7(11), 2016
PMID: 28042464
In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces.
Pfeifer V, Jones TE, Velasco Velez JJ, Arrigo R, Piccinin S, Havecker M, Knop-Gericke A, Schlogl R., Chem Sci 8(3), 2016
PMID: 28507666
The electronic structure of iridium oxide electrodes active in water splitting.
Pfeifer V, Jones TE, Velasco Velez JJ, Massue C, Greiner MT, Arrigo R, Teschner D, Girgsdies F, Scherzer M, Allan J, Hashagen M, Weinberg G, Piccinin S, Havecker M, Knop-Gericke A, Schlogl R., Phys Chem Chem Phys 18(4), 2016
PMID: 26700139
Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction.
Xiao H, Shin H, Goddard WA 3rd., Proc. Natl. Acad. Sci. U.S.A. 115(23), 2018
PMID: 29784794
Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.
Gorlin M, Chernev P, Ferreira de Araujo J, Reier T, Dresp S, Paul B, Krahnert R, Dau H, Strasser P., J. Am. Chem. Soc. 138(17), 2016
PMID: 27031737
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30728373
PubMed | Europe PMC

Suchen in

Google Scholar