Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions

Perez F, Fernandes de Brito L, Wendisch VF (2019)
Frontiers in Microbiology 10: 340.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.67 MB
Abstract / Bemerkung
Pipecolic acid or L-PA is a cyclic amino acid derived from L-lysine which has gained interest in the recent years within the pharmaceutical and chemical industries. L-PA can be produced efficiently using recombinant Corynebacterium glutamicum strains by expanding the natural L-lysine biosynthetic pathway. L-PA is a six-membered ring homolog of the five-membered ring amino acid L-proline, which serves as compatible solute in C. glutamicum. Here, we show that de novo synthesized or externally added L-PA partially is beneficial for growth under hyper-osmotic stress conditions. C. glutamicum cells accumulated L-PA under elevated osmotic pressure and released it after an osmotic down shock. In the absence of the mechanosensitive channel YggB intracellular L-PA concentrations increased and its release after osmotic down shock was slower. The proline permease ProP was identified as a candidate L-PA uptake system since RNAseq analysis revealed increased proP RNA levels upon L-PA production. Under hyper-osmotic conditions, a ΔproP strain showed similar growth behavior than the parent strain when L-proline was added externally. By contrast, the growth impairment of the ΔproP strain under hyper-osmotic conditions could not be alleviated by addition of L-PA unless proP was expressed from a plasmid. This is commensurate with the view that L-proline can be imported into the C. glutamicum cell by ProP and other transporters such as EctP and PutP, while ProP appears of major importance for L-PA uptake under hyper-osmotic stress conditions.
Erscheinungsjahr
2019
Zeitschriftentitel
Frontiers in Microbiology
Band
10
Seite(n)
340
ISSN
1664-302x
eISSN
1664-302X
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2933667

Zitieren

Perez F, Fernandes de Brito L, Wendisch VF. Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology. 2019;10:340.
Perez, F., Fernandes de Brito, L., & Wendisch, V. F. (2019). Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology, 10, 340. doi:10.3389/fmicb.2019.00340
Perez, Fernando, Fernandes de Brito, Luciana, and Wendisch, Volker F. 2019. “Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions”. Frontiers in Microbiology 10: 340.
Perez, F., Fernandes de Brito, L., and Wendisch, V. F. (2019). Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology 10, 340.
Perez, F., Fernandes de Brito, L., & Wendisch, V.F., 2019. Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology, 10, p 340.
F. Perez, L. Fernandes de Brito, and V.F. Wendisch, “Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions”, Frontiers in Microbiology, vol. 10, 2019, pp. 340.
Perez, F., Fernandes de Brito, L., Wendisch, V.F.: Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions. Frontiers in Microbiology. 10, 340 (2019).
Perez, Fernando, Fernandes de Brito, Luciana, and Wendisch, Volker F. “Function of L-Pipecolic acid as compatible solute in Corynebacterium glutamicum as basis for its production under hyperosmolar conditions”. Frontiers in Microbiology 10 (2019): 340.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:05Z
MD5 Prüfsumme
8464090d69d3630e866207a3fc45afe5


77 References

Daten bereitgestellt von Europe PubMed Central.

Differential expression analysis for sequence count data.
Anders S, Huber W., Genome Biol. 11(10), 2010
PMID: 20979621
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Sampling for metabolome analysis of microorganisms.
Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C., Anal. Chem. 79(10), 2007
PMID: 17411014
The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation.
Borngen K, Battle AR, Moker N, Morbach S, Marin K, Martinac B, Kramer R., Biochim. Biophys. Acta 1798(11), 2010
PMID: 20599688
Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in B. subtilis.
Bremer E.., 2000
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis.
Czech L, Hermann L, Stoveken N, Richter AA, Hoppner A, Smits SHJ, Heider J, Bremer E., Genes (Basel) 9(4), 2018
PMID: 29565833
An overview of the role and diversity of compatible solutes in Bacteria and Archaea.
da Costa MS, Santos H, Galinski EA., Adv. Biochem. Eng. Biotechnol. 61(), 1998
PMID: 9670799
Excretion of glutamate from Corynebacterium glutamicum triggered by amine surfactants.
Duperray F, Jezequel D, Ghazi A, Letellier L, Shechter E., Biochim. Biophys. Acta 1103(2), 1992
PMID: 1543710

Eggeling L., Bott M.., 2005
Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum.
Farwick M, Siewe RM, Kramer R., J. Bacteriol. 177(16), 1995
PMID: 7642496
Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidines and glutamine.
Frings E., Kunte H., Galinski E.., 1993
Enzymatic assembly of overlapping DNA fragments.
Gibson DG., Meth. Enzymol. 498(), 2011
PMID: 21601685
Osmotic adjustment in Brevibacterium ammoniagenes: pipecolic acid accumulation at elevated osmolalities.
Gouesbet G., Blanco C., Hamelin J., Bernard T.., 1992
Pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP.
Gouesbet G, Jebbar M, Talibart R, Bernard T, Blanco C., Microbiology (Reading, Engl.) 140 ( Pt 9)(), 1994
PMID: 7952193
Osmoprotection by pipecolic acid in Sinorhizobium meliloti: specific effects of D and L isomers.
Gouffi K, Bernard T, Blanco C., Appl. Environ. Microbiol. 66(6), 2000
PMID: 10831411
The multifunctional role of ectoine as a natural cell protectant.
Graf R, Anzali S, Buenger J, Pfluecker F, Driller H., Clin. Dermatol. 26(4), 2008
PMID: 18691511
Sodium and proline accumulation in Corynebacterium glutamicum as a response to an osmotic saline upshock.
Guillouet S., Engasser J.., 1995
Carrier-mediated glutamate secretion by Corynebacterium glutamicum under biotin limitation.
Gutmann M, Hoischen C, Kramer R., Biochim. Biophys. Acta 1112(1), 1992
PMID: 1358200
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Identification of the membrane protein SucE and its role in succinate transport in Corynebacterium glutamicum.
Huhn S, Jolkver E, Kramer R, Marin K., Appl. Microbiol. Biotechnol. 89(2), 2010
PMID: 20809072
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare.
Jorge CD, Borges N, Bagyan I, Bilstein A, Santos H., Extremophiles 20(3), 2016
PMID: 27071404
A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources.
Jorge JMP, Perez-Garcia F, Wendisch VF., Bioresour. Technol. 245(Pt B), 2017
PMID: 28522202
The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948626
From zero to hero - production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum.
Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, Abendroth Gv, Zelder O, Wittmann C., Metab. Eng. 25(), 2014
PMID: 24831706
Means or terminating reactions
Klingenberg M., Pfaff E.., 1967
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Langmead B, Trapnell C, Pop M, Salzberg SL., Genome Biol. 10(3), 2009
PMID: 19261174
Some Like It Hot: Heat Resistance of Escherichia coli in Food.
Li H, Ganzle M., Front Microbiol 7(), 2016
PMID: 27857712
Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.
Lubitz D, Wendisch VF., BMC Microbiol. 16(1), 2016
PMID: 27717325
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J., BMC Genomics 14(), 2013
PMID: 24138339
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation.
Mimitsuka T, Sawai H, Hatsu M, Yamada K., Biosci. Biotechnol. Biochem. 71(9), 2007
PMID: 17895539
ARNold: a web tool for the prediction of Rho-independent transcription terminators.
Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D., RNA Biol 8(1), 2011
PMID: 21282983
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli.
Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X., Metab. Eng. 36(), 2016
PMID: 26969253
Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum.
Nottebrock D, Meyer U, Kramer R, Morbach S., FEMS Microbiol. Lett. 218(2), 2003
PMID: 12586408
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Perez-Garcia F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Perez-Garcia F, Peters-Wendisch P, Wendisch VF., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27345060
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum.
Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Kramer R, Seibold GM., Microb. Cell Fact. 17(1), 2018
PMID: 29908566
Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum.
Ruffert S, Berrier C, Kramer R, Ghazi A., J. Bacteriol. 181(5), 1999
PMID: 10049402
Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity.
Ruffert S., Lambert C., Peter H., Wendisch V., Krämer R.., 1997
Ectoine: a compatible solute in radio-halophilic Stenotrophomonas sp. WMA-LM19 strain to prevent ultraviolet-induced protein damage.
Sajjad W, Qadir S, Ahmad M, Rafiq M, Hasan F, Tehan R, McPhail KL, Shah AA., J. Appl. Microbiol. 125(2), 2018
PMID: 29729069
Bacterial milking: A novel bioprocess for production of compatible solutes.
Sauer T, Galinski EA., Biotechnol. Bioeng. 57(3), 1998
PMID: 10099207
A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum.
Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M., Electrophoresis 22(20), 2001
PMID: 11824608
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria.
Simon R., Priefer U., Pühler A.., 1983
Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum.
Skjerdal O., Sletta H., Flenstad S., Josefsen K., Levine D., Ellingsen T.., 1996
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
LcoP, an osmoregulated betaine/ectoine uptake system from Corynebacterium glutamicum.
Steger R, Weinand M, Kramer R, Morbach S., FEBS Lett. 573(1-3), 2004
PMID: 15327991
Biosynthesis, biotechnological production, and applications of glucosylglycerols.
Tan X, Luo Q, Lu X., Appl. Microbiol. Biotechnol. 100(14), 2016
PMID: 27225470
Reporting Key Features in Cold-Adapted Bacteria.
Tribelli PM, Lopez NI., Life (Basel) 8(1), 2018
PMID: 29534000
Significance of the natural occurrence of L- versus D-pipecolic acid: a review.
Vranova V, Lojkova L, Rejsek K, Formanek P., Chirality 25(12), 2013
PMID: 24114978
Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum.
Weinand M, Kramer R, Morbach S., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17390131
Osmosensing by bacteria: signals and membrane-based sensors.
Wood JM., Microbiol. Mol. Biol. Rev. 63(1), 1999
PMID: 10066837
Osmosensing and osmoregulatory compatible solute accumulation by bacteria.
Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT., Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 130(3), 2001
PMID: 11913457
Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
Ying H, Tao S, Wang J, Ma W, Chen K, Wang X, Ouyang P., Microb. Cell Fact. 16(1), 2017
PMID: 28347340
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30858843
PubMed | Europe PMC

Suchen in

Google Scholar