Natural reaction channels in H+ CHD3 H-2 + CD3

Ellerbrock R, Mantheuwe U (2018)
FARADAY DISCUSSIONS 212: 217-235.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ellerbrock, RomanUniBi; Mantheuwe, Uwe
Abstract / Bemerkung
Natural reaction channels are defined by the singular value decomposition of the S-matrix and can be interpreted as pathways through the transition state of the reaction. Here, the reaction probabilities and asymptotic state distributions associated with the natural reaction channels of the H + CHD3 H-2 + CD3 reactions are presented. The analysis is based on accurate quantum dynamics data obtained by full-dimensional (multi-layer) multi-configurational time-dependent Hartree (MCTDH) calculations using the quantum transition state framework and a high-level ab initio potential energy surface. The reaction starting from several different initial ro-vibrational states is investigated. The results provide interesting insights into symmetry-related differences between the mode-selective chemistry of CH4 and CHD3. The presence of localized vibrational modes in CHD3 is found to limit the loss of memory effect seen in the H + CH4 H-2 + CH3 reaction and to give rise to spectator behavior of the selected modes. Furthermore, the recently found reactivity borrowing effect, which results from a Fermi resonance-type state mixing of the triple umbrella excited and single C-H-stretch excited states of CHD3, is investigated. Here, the natural reaction channel analysis provides detailed information on the resonant energy transfer in the entrance channel of the reaction and the correlation between the asymptotic states of the reactants and the vibrational states of the activated complex.
Erscheinungsjahr
2018
Zeitschriftentitel
FARADAY DISCUSSIONS
Band
212
Seite(n)
217-235
ISSN
1359-6640
eISSN
1364-5498
Page URI
https://pub.uni-bielefeld.de/record/2933530

Zitieren

Ellerbrock R, Mantheuwe U. Natural reaction channels in H+ CHD3 H-2 + CD3. FARADAY DISCUSSIONS. 2018;212:217-235.
Ellerbrock, R., & Mantheuwe, U. (2018). Natural reaction channels in H+ CHD3 H-2 + CD3. FARADAY DISCUSSIONS, 212, 217-235. doi:10.1039/c8fd00081f
Ellerbrock, Roman, and Mantheuwe, Uwe. 2018. “Natural reaction channels in H+ CHD3 H-2 + CD3”. FARADAY DISCUSSIONS 212: 217-235.
Ellerbrock, R., and Mantheuwe, U. (2018). Natural reaction channels in H+ CHD3 H-2 + CD3. FARADAY DISCUSSIONS 212, 217-235.
Ellerbrock, R., & Mantheuwe, U., 2018. Natural reaction channels in H+ CHD3 H-2 + CD3. FARADAY DISCUSSIONS, 212, p 217-235.
R. Ellerbrock and U. Mantheuwe, “Natural reaction channels in H+ CHD3 H-2 + CD3”, FARADAY DISCUSSIONS, vol. 212, 2018, pp. 217-235.
Ellerbrock, R., Mantheuwe, U.: Natural reaction channels in H+ CHD3 H-2 + CD3. FARADAY DISCUSSIONS. 212, 217-235 (2018).
Ellerbrock, Roman, and Mantheuwe, Uwe. “Natural reaction channels in H+ CHD3 H-2 + CD3”. FARADAY DISCUSSIONS 212 (2018): 217-235.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

96 References

Daten bereitgestellt von Europe PubMed Central.

Vibrational control in the reaction of methane with atomic chlorine.
Kim ZH, Bechtel HA, Zare RN., J. Am. Chem. Soc. 123(50), 2001
PMID: 11741451

Kim, J. Chem. Phys. 117(), 2002

Yoon, J. Chem. Phys. 116(), 2002

Yoon, J. Chem. Phys. 119(), 2003
Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?
Yan S, Wu YT, Zhang B, Yue XF, Liu K., Science 316(5832), 2007
PMID: 17588925
Tracking the energy flow along the reaction path.
Yan S, Wu YT, Liu K., Proc. Natl. Acad. Sci. U.S.A. 105(35), 2008
PMID: 18664573
Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom.
Wang F, Lin JS, Liu K., Science 331(6019), 2011
PMID: 21330543
Vibrational Enhancement Factor of the Cl + CHD3(v1 = 1) Reaction: Rotational-Probe Effects.
Wang F, Lin JS, Cheng Y, Liu K., J Phys Chem Lett 4(2), 2013
PMID: 26283442
Vibrational Enhancement Factor of the Cl + CHD3(v1 = 1) Reaction: Rotational-Probe Effects.
Wang F, Lin JS, Cheng Y, Liu K., J Phys Chem Lett 4(2), 2013
PMID: 26283442
State-specific correlation of coincident product pairs in the F + CD4 reaction.
Lin JJ, Zhou J, Shiu W, Liu K., Science 300(5621), 2003
PMID: 12738861

Zhou, J. Chem. Phys. 119(), 2003

Zhou, J. Chem. Phys. 119(), 2003

Zhou, J. Chem. Phys. 119(), 2003
Rotationally selected product pair correlation in F+CD(4)-->DF(nu('))+CD(3)(nu=0,N).
Zhou J, Shiu W, Lin JJ, Liu K., J Chem Phys 120(13), 2004
PMID: 15267466
Reactive resonance in a polyatomic reaction.
Shiu W, Lin JJ, Liu K., Phys. Rev. Lett. 92(10), 2004
PMID: 15089205
Rotationally selected product pair correlation: F+CD4 --> DF(nu')+CD3(nu2 = 0 and 2, N).
Zhou J, Shiu W, Lin JJ, Liu K., J Chem Phys 124(10), 2006
PMID: 16542081
State-correlation matrix of the product pair from F + CD(4)--> DF(nu') + CD(3)(0 v(2) 0 0).
Zhou J, Lin JJ, Shiu W, Liu K., Phys Chem Chem Phys 8(25), 2006
PMID: 16880913

Harper, J. Chem. Phys. 113(), 2000
Imaging the pair-correlated excitation function: The F+CH4-->HF(v')+CH3(nu=0) reaction.
Shiu W, Lin JJ, Liu K, Wu M, Parker DH., J Chem Phys 120(1), 2004
PMID: 15267267
On the signal depletion induced by stretching excitation of methane in the reaction with the F atom.
Cheng Y, Pan H, Wang F, Liu K., Phys Chem Chem Phys 16(2), 2014
PMID: 24048150
How Is C-H Vibrational Energy Redistributed in F + CHD3(ν1 = 1) → HF + CD3?
Yang J, Zhang D, Jiang B, Dai D, Wu G, Zhang D, Yang X., J Phys Chem Lett 5(11), 2014
PMID: 26273855

Wang, Chem. Sci. 1(), 2010
Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction.
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X., Proc. Natl. Acad. Sci. U.S.A. 107(29), 2010
PMID: 20615988
An ab initio potential surface describing abstraction and exchange for H+CH4.
Zhang X, Braams BJ, Bowman JM., J Chem Phys 124(2), 2006
PMID: 16422563
Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F+CH4-->HF+CH3 reaction.
Czako G, Shepler BC, Braams BJ, Bowman JM., J Chem Phys 130(8), 2009
PMID: 19256605
Quasiclassical trajectory study of the F + CH4 reaction dynamics on a dual-level interpolated potential energy surface.
Castillo JF, Aoiz FJ, Banares L, Martinez-Nunez E, Fernandez-Ramos A, Vazquez S., J Phys Chem A 109(38), 2005
PMID: 16834242

Yang, J. Chem. Phys. 117(), 2002
Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction.
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH., J Chem Phys 134(6), 2011
PMID: 21322696
Accuracy of the centrifugal sudden approximation in the H + CHD₃ → H₂ + CD₃ reaction.
Zhang Z, Chen J, Liu S, Zhang DH., J Chem Phys 140(22), 2014
PMID: 24929385
Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction.
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H., J Chem Phys 144(17), 2016
PMID: 27155615
Theoretical Study of the Validity of the Polanyi Rules for the Late-Barrier Cl + CHD3 Reaction.
Zhang Z, Zhou Y, Zhang DH, Czako G, Bowman JM., J Phys Chem Lett 3(23), 2012
PMID: 26290965
Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction.
Liu R, Wang F, Jiang B, Czako G, Yang M, Liu K, Guo H., J Chem Phys 141(7), 2014
PMID: 25149789

Huarte-Larrañaga, J. Chem. Phys. 113(), 2000

Huarte-Larrañaga, J. Phys. Chem. A 105(), 2001

Huarte-Larrañaga, J. Chem. Phys. 116(), 2002

Wu, J. Chem. Phys. 119(), 2003
First-principles theory for the H + CH4 --> H2 + CH3 reaction.
Wu T, Werner HJ, Manthe U., Science 306(5705), 2004
PMID: 15618512
Loss of Memory in H + CH4 → H2 + CH3 State-to-State Reactive Scattering.
Welsch R, Manthe U., J Phys Chem Lett 6(3), 2015
PMID: 26261943

Ellerbrock, Chem. Phys. 482(), 2017

Huarte-Larrañaga, J. Chem. Phys. 117(), 2002

Yamamoto, J. Chem. Phys. 33(), 1960

Miller, J. Chem. Phys. 61(), 1974

Miller, J. Chem. Phys. 79(), 1983

Manthe, J. Chem. Phys. 99(), 1993

Manthe, J. Chem. Phys. 102(), 1995

Thompson, J. Chem. Phys. 102(), 1995

Manthe, Chem. Phys. Lett. 241(), 1995

Manthe, Chem. Phys. Lett. 252(), 1996

Zhang, J. Chem. Phys. 104(), 1996

Matzkies, J. Chem. Phys. 106(), 1997

Wang, J. Chem. Phys. 107(), 1997

Matzkies, J. Chem. Phys. 108(), 1998

Matzkies, J. Chem. Phys. 110(), 1999

Matzkies, J. Chem. Phys. 112(), 2000
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

Welsch, Mol. Phys. 110(), 2012

Meyer, Chem. Phys. Lett. 165(), 1990

Manthe, J. Chem. Phys. 97(), 1992

Wang, J. Chem. Phys. 119(), 2003

Schinke, 1999

Bowman, J. Phys. Chem. 95(), 1991
Non-adiabatic effects in F + CHD3 reactive scattering.
Palma J, Manthe U., J Chem Phys 146(21), 2017
PMID: 28595412
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30226505
PubMed | Europe PMC

Suchen in

Google Scholar