Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes

Markova M, Pivovarova O, Hornemann S, Sucher S, Frahnow T, Wegner K, Machann J, Petzke KJ, Hierholzer J, Lichtinghagen R, Herder C, et al. (2016)
Gastroenterology 152(3): 571-585.e8.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Markova, Mariya; Pivovarova, Olga; Hornemann, Silke; Sucher, Stephanie; Frahnow, TuridUniBi ; Wegner, Katrin; Machann, Jürgen; Petzke, Klaus Jürgen; Hierholzer, Johannes; Lichtinghagen, Ralf; Herder, Christian; Carstensen-Kirberg, Maren
Alle
Erscheinungsjahr
2016
Zeitschriftentitel
Gastroenterology
Band
152
Ausgabe
3
Seite(n)
571-585.e8
ISSN
0016-5085
Page URI
https://pub.uni-bielefeld.de/record/2933486

Zitieren

Markova M, Pivovarova O, Hornemann S, et al. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology. 2016;152(3):571-585.e8.
Markova, M., Pivovarova, O., Hornemann, S., Sucher, S., Frahnow, T., Wegner, K., Machann, J., et al. (2016). Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology, 152(3), 571-585.e8. doi:10.1053/j.gastro.2016.10.007
Markova, Mariya, Pivovarova, Olga, Hornemann, Silke, Sucher, Stephanie, Frahnow, Turid, Wegner, Katrin, Machann, Jürgen, et al. 2016. “Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes”. Gastroenterology 152 (3): 571-585.e8.
Markova, M., Pivovarova, O., Hornemann, S., Sucher, S., Frahnow, T., Wegner, K., Machann, J., Petzke, K. J., Hierholzer, J., Lichtinghagen, R., et al. (2016). Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology 152, 571-585.e8.
Markova, M., et al., 2016. Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology, 152(3), p 571-585.e8.
M. Markova, et al., “Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes”, Gastroenterology, vol. 152, 2016, pp. 571-585.e8.
Markova, M., Pivovarova, O., Hornemann, S., Sucher, S., Frahnow, T., Wegner, K., Machann, J., Petzke, K.J., Hierholzer, J., Lichtinghagen, R., Herder, C., Carstensen-Kirberg, M., Roden, M., Rudovich, N., Klaus, S., Thomann, R., Schneeweiss, R., Rohn, S., Pfeiffer, A.F.H.: Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes. Gastroenterology. 152, 571-585.e8 (2016).
Markova, Mariya, Pivovarova, Olga, Hornemann, Silke, Sucher, Stephanie, Frahnow, Turid, Wegner, Katrin, Machann, Jürgen, Petzke, Klaus Jürgen, Hierholzer, Johannes, Lichtinghagen, Ralf, Herder, Christian, Carstensen-Kirberg, Maren, Roden, Michael, Rudovich, Natalia, Klaus, Susanne, Thomann, Ralph, Schneeweiss, Rosemarie, Rohn, Sascha, and Pfeiffer, Andreas F.H. “Isocaloric Diets High in Animal or Plant Protein Reduce Liver Fat and Inflammation in Individuals With Type 2 Diabetes”. Gastroenterology 152.3 (2016): 571-585.e8.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sweet Snacks Are Positively and Fruits and Vegetables Are Negatively Associated with Visceral or Liver Fat Content in Middle-Aged Men and Women.
van Eekelen E, Geelen A, Alssema M, Lamb HJ, de Roos A, Rosendaal FR, de Mutsert R., J Nutr (), 2019
PMID: 30657914
Comprehensive lifestyle intervention vs soy protein-based meal regimen in non-alcoholic steatohepatitis.
Deibert P, Lazaro A, Schaffner D, Berg A, Koenig D, Kreisel W, Baumstark MW, Steinmann D, Buechert M, Lange T., World J Gastroenterol 25(9), 2019
PMID: 30862999
Impact of Nutritional Changes on Nonalcoholic Fatty Liver Disease.
Perdomo CM, Frühbeck G, Escalada J., Nutrients 11(3), 2019
PMID: 30901929
Effects of EPA and lipoic acid supplementation on circulating FGF21 and the fatty acid profile in overweight/obese women following a hypocaloric diet.
Escoté X, Félix-Soriano E, Gayoso L, Huerta AE, Alvarado MA, Ansorena D, Astiasarán I, Martínez JA, Moreno-Aliaga MJ., Food Funct 9(5), 2018
PMID: 29766165
Interorgan Metabolic Crosstalk in Human Insulin Resistance.
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M., Physiol Rev 98(3), 2018
PMID: 29767564
Carbohydrates and diet patterns in nonalcoholic fatty liver disease in children and adolescents.
Sekkarie A, Welsh JA, Vos MB., Curr Opin Clin Nutr Metab Care 21(4), 2018
PMID: 29781841
Rate of appearance of amino acids after a meal regulates insulin and glucagon secretion in patients with type 2 diabetes: a randomized clinical trial.
Markova M, Hornemann S, Sucher S, Wegner K, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH., Am J Clin Nutr 108(2), 2018
PMID: 29982277
Obesity and nonalcoholic fatty liver disease: current perspectives.
Sarwar R, Pierce N, Koppe S., Diabetes Metab Syndr Obes 11(), 2018
PMID: 30288073
Acute Endothelial Benefits of Fat Restriction over Carbohydrate Restriction in Type 2 Diabetes Mellitus: Beyond Carbs and Fats.
Barbosa-Yañez RL, Dambeck U, Li L, Machann J, Kabisch S, Pfeiffer AFH., Nutrients 10(12), 2018
PMID: 30513768
An 8-week diet high in cereal fiber and coffee but free of red meat does not improve beta-cell function in patients with type 2 diabetes mellitus: a randomized controlled trial.
Karusheva Y, Kunstein L, Bierwagen A, Nowotny B, Kabisch S, Groener JB, Fleitmann AK, Herder C, Pacini G, Strassburger K, Häring HU, Nawroth PP, Pfeiffer AFH, Burkart V, Müssig K, Roden M, Szendroedi J., Nutr Metab (Lond) 15(), 2018
PMID: 30619502
Comparison of the effects of diets high in animal or plant protein on metabolic and cardiovascular markers in type 2 diabetes: A randomized clinical trial.
Sucher S, Markova M, Hornemann S, Pivovarova O, Rudovich N, Thomann R, Schneeweiss R, Rohn S, Pfeiffer AFH., Diabetes Obes Metab 19(7), 2017
PMID: 28181738
How to Approach a Patient With Nonalcoholic Fatty Liver Disease.
Tilg H., Gastroenterology 153(2), 2017
PMID: 28647352

64 References

Daten bereitgestellt von Europe PubMed Central.

Clinical review: nonalcoholic fatty liver disease: a novel cardiometabolic risk factor for type 2 diabetes and its complications
Targher, J Clin Endocrinol Metab 98(), 2013
Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.
Birkenfeld AL, Shulman GI., Hepatology 59(2), 2014
PMID: 23929732
Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes
Ma, J Biol Chem 280(), 2005
Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
Kim, J Clin Invest 101(), 1998
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome.
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD., Cell 156(4), 2014
PMID: 24529379
Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance.
Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G, Marette A., Proc. Natl. Acad. Sci. U.S.A. 104(35), 2007
PMID: 17709744
High dietary protein intake, reducing or eliciting insulin resistance?
Rietman A, Schwarz J, Tome D, Kok FJ, Mensink M., Eur J Clin Nutr 68(9), 2014
PMID: 24986822
The metabolic response of subjects with type 2 diabetes to a high-protein, weight-maintenance diet
Nuttall, J Clin Endocrinol Metab 88(), 2003
Branched-chain amino acids in metabolic signalling and insulin resistance.
Lynch CJ, Adams SH., Nat Rev Endocrinol 10(12), 2014
PMID: 25287287
FGF21 is an endocrine signal of protein restriction
Laeger, J Clin Invest 124(), 2014
High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: a 3-year prospective study in China
Li, J Hepatol 58(), 2013
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease.
Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E., Gastroenterology 139(2), 2010
PMID: 20451522
Fructose ingestion acutely stimulates circulating FGF21 levels in humans.
Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E., Mol Metab 4(1), 2014
PMID: 25685689
FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver.
von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, Urizar AI, Madsen AN, Ratner C, Holst B, Karstoft K, Vandenbeuch A, Anderson CB, Cassell MD, Thompson AP, Solomon TP, Rahmouni K, Kinnamon SC, Pieper AA, Gillum MP, Potthoff MJ., Cell Metab. 23(2), 2015
PMID: 26724858
Physiological modulation of circulating FGF21: relevance of free fatty acids and insulin.
Mai K, Bobbert T, Groth C, Assmann A, Meinus S, Kraatz J, Andres J, Arafat AM, Pfeiffer AF, Mohlig M, Spranger J., Am. J. Physiol. Endocrinol. Metab. 299(1), 2010
PMID: 20424140
Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans.
Theytaz F, Noguchi Y, Egli L, Campos V, Buehler T, Hodson L, Patterson BW, Nishikata N, Kreis R, Mittendorfer B, Fielding B, Boesch C, Tappy L., Am. J. Clin. Nutr. 96(5), 2012
PMID: 23034968
Effects of a whey protein supplementation on intrahepatocellular lipids in obese female patients.
Bortolotti M, Maiolo E, Corazza M, Van Dijke E, Schneiter P, Boss A, Carrel G, Giusti V, Le KA, Quo Chong DG, Buehler T, Kreis R, Boesch C, Tappy L., Clin Nutr 30(4), 2011
PMID: 21288612
High protein intake reduces intrahepatocellular lipid deposition in humans.
Bortolotti M, Kreis R, Debard C, Cariou B, Faeh D, Chetiveaux M, Ith M, Vermathen P, Stefanoni N, Le KA, Schneiter P, Krempf M, Vidal H, Boesch C, Tappy L., Am. J. Clin. Nutr. 90(4), 2009
PMID: 19710199
Increasing protein intake modulates lipid metabolism in healthy young men and women consuming a high-fat hypercaloric diet
Rietman, J Nutr 144(), 2014
Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes.
Machann J, Thamer C, Stefan N, Schwenzer NF, Kantartzis K, Haring HU, Claussen CD, Fritsche A, Schick F., Radiology 257(2), 2010
PMID: 20713612
Calculation of substrate oxidation rates in vivo from gaseous exchange
Frayn, J Appl Physiol Respir Environ Exerc Physiol 55(), 1983
Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population.
Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL., Am. J. Physiol. Endocrinol. Metab. 288(2), 2004
PMID: 15339742
The Enhanced Liver Fibrosis (ELF) score: normal values, influence factors and proposed cut-off values
Lichtinghagen, J Hepatol 59(), 2013
Splanchnic lipolysis in human obesity
Nielsen, J Clin Invest 113(), 2004
Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients.
Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G, Villarroya F., Int J Obes (Lond) 39(1), 2014
PMID: 24813368
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE., Cell Metab. 17(5), 2013
PMID: 23663742
Hepatic Steatosis as a Marker of Metabolic Dysfunction.
Fabbrini E, Magkos F., Nutrients 7(6), 2015
PMID: 26102213
Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis.
Bradbury MW., Am. J. Physiol. Gastrointest. Liver Physiol. 290(2), 2006
PMID: 16407588
Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.
Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E, Rizzetto M., Diabetologia 48(4), 2005
PMID: 15747110
Alterations in fatty acid kinetics in obese adolescents with increased intrahepatic triglyceride content.
Fabbrini E, deHaseth D, Deivanayagam S, Mohammed BS, Vitola BE, Klein S., Obesity (Silver Spring) 17(1), 2008
PMID: 18948971
Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease.
Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S., Gastroenterology 134(2), 2007
PMID: 18242210
Non-esterified fatty acids impair insulin-mediated glucose uptake and disposition in the liver.
Iozzo P, Lautamaki R, Geisler F, Virtanen KA, Oikonen V, Haaparanta M, Yki-Jarvinen H, Ferrannini E, Knuuti J, Nuutila P., Diabetologia 47(7), 2004
PMID: 15243703
Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids.
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JP, Cline GW, Jurczak MJ, Samuel VT, Shulman GI., Proc. Natl. Acad. Sci. U.S.A. 112(4), 2015
PMID: 25564660
Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes.
Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, Jurczak MJ, Abudukadier A, Han MS, Zhang XM, Ruan HB, Yang X, Caprio S, Kaech SM, Sul HS, Birnbaum MJ, Davis RJ, Cline GW, Petersen KF, Shulman GI., Cell 160(4), 2015
PMID: 25662011
The plasma lipidomic signature of nonalcoholic steatohepatitis.
Puri P, Wiest MM, Cheung O, Mirshahi F, Sargeant C, Min HK, Contos MJ, Sterling RK, Fuchs M, Zhou H, Watkins SM, Sanyal AJ., Hepatology 50(6), 2009
PMID: 19937697
Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial.
Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, Berglund J, Pulkki K, Basu S, Uusitupa M, Rudling M, Arner P, Cederholm T, Ahlstrom H, Riserus U., Am. J. Clin. Nutr. 95(5), 2012
PMID: 22492369
Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis
Loomba, J Lipid Res 56(), 2015
Effect of short-term carbohydrate overfeeding and long-term weight loss on liver fat in overweight humans.
Sevastianova K, Santos A, Kotronen A, Hakkarainen A, Makkonen J, Silander K, Peltonen M, Romeo S, Lundbom J, Lundbom N, Olkkonen VM, Gylling H, Fielding BA, Rissanen A, Yki-Jarvinen H., Am. J. Clin. Nutr. 96(4), 2012
PMID: 22952180
A molecular model of human branched-chain amino acid metabolism.
Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM., Am. J. Clin. Nutr. 68(1), 1998
PMID: 9665099
Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial.
Gran P, Larsen AE, Bonham M, Dordevic AL, Rupasinghe T, Silva C, Nahid A, Tull D, Sinclair AJ, Mitchell CJ, Cameron-Smith D., Nutr Metab (Lond) 11(1), 2014
PMID: 25302072
Fibroblast growth factor 21 is regulated by the IRE1alpha-XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress-induced hepatic steatosis
Jiang, J Biol Chem 289(), 2014
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance.
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Veniant MM, Xu J., Endocrinology 153(1), 2011
PMID: 22067317
FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
Kharitonenkov, J Cell Physiol 215(), 2008
Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates
Jobgen, J Nutr Biochem 17(), 2006
Novel locus including FGF21 is associated with dietary macronutrient intake.
Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, Ngwa JS; CHARGE Nutrition Working Group, Qi Q, Curhan GC, Rimm EB, Hunter DJ, Pasquale LR, Ridker PM, Hu FB, Chasman DI, Qi L; DietGen Consortium., Hum. Mol. Genet. 22(9), 2013
PMID: 23372041
Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake.
Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazier-Wood AC, Houston DK, Kanoni S, Lemaitre RN, Luan J, Mikkila V, Renstrom F, Sonestedt E, Zhao JH, Chu AY, Qi L, Chasman DI, de Oliveira Otto MC, Dhurandhar EJ, Feitosa MF, Johansson I, Khaw KT, Lohman KK, Manichaikul A, McKeown NM, Mozaffarian D, Singleton A, Stirrups K, Viikari J, Ye Z, Bandinelli S, Barroso I, Deloukas P, Forouhi NG, Hofman A, Liu Y, Lyytikainen LP, North KE, Dimitriou M, Hallmans G, Kahonen M, Langenberg C, Ordovas JM, Uitterlinden AG, Hu FB, Kalafati IP, Raitakari O, Franco OH, Johnson A, Emilsson V, Schrack JA, Semba RD, Siscovick DS, Arnett DK, Borecki IB, Franks PW, Kritchevsky SB, Lehtimaki T, Loos RJ, Orho-Melander M, Rotter JI, Wareham NJ, Witteman JC, Ferrucci L, Dedoussis G, Cupples LA, Nettleton JA., Am. J. Clin. Nutr. 97(6), 2013
PMID: 23636237
FGF21 Regulates Sweet and Alcohol Preference.
Talukdar S, Owen BM, Song P, Hernandez G, Zhang Y, Zhou Y, Scott WT, Paratala B, Turner T, Smith A, Bernardo B, Muller CP, Tang H, Mangelsdorf DJ, Goodwin B, Kliewer SA., Cell Metab. 23(2), 2015
PMID: 26724861
Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease
Vuppalanchi, Clin Gastroenterol Hepatol 12(), 2014
Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes.
Machann J, Thamer C, Stefan N, Schwenzer NF, Kantartzis K, Haring HU, Claussen CD, Fritsche A, Schick F., Radiology 257(2), 2010
PMID: 20713612
Topography mapping of whole body adipose tissue using A fully automated and standardized procedure
Wurslin, J Magn Reson Imaging 31(), 2010
Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized 1H-MR spectroscopy.
Machann J, Thamer C, Schnoedt B, Stefan N, Haring HU, Claussen CD, Fritsche A, Schick F., Magn Reson Med 55(4), 2006
PMID: 16506186
Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma.
Baylin A, Kim MK, Donovan-Palmer A, Siles X, Dougherty L, Tocco P, Campos H., Am. J. Epidemiol. 162(4), 2005
PMID: 16014782
Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis
Liu, J Chromatogr B Analyt Technol Biomed Life Sci 878(), 2010
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 27765690
PubMed | Europe PMC

Suchen in

Google Scholar