VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans

Schüler R, Seebeck N, Osterhoff MA, Witte V, Flöel A, Busjahn A, Jais A, Brüning JC, Frahnow T, Kabisch S, Pivovarova O, et al. (2018)
Molecular Metabolism 11: 129-136.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schüler, Rita; Seebeck, Nicole; Osterhoff, Martin A.; Witte, Veronica; Flöel, Agnes; Busjahn, Andreas; Jais, Alexander; Brüning, Jens C.; Frahnow, TuridUniBi ; Kabisch, Stefan; Pivovarova, Olga; Hornemann, Silke
Alle
Erscheinungsjahr
2018
Zeitschriftentitel
Molecular Metabolism
Band
11
Seite(n)
129-136
ISSN
2212-8778
eISSN
2212-8778
Page URI
https://pub.uni-bielefeld.de/record/2933481

Zitieren

Schüler R, Seebeck N, Osterhoff MA, et al. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism. 2018;11:129-136.
Schüler, R., Seebeck, N., Osterhoff, M. A., Witte, V., Flöel, A., Busjahn, A., Jais, A., et al. (2018). VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism, 11, 129-136. doi:10.1016/j.molmet.2018.02.004
Schüler, R., Seebeck, N., Osterhoff, M. A., Witte, V., Flöel, A., Busjahn, A., Jais, A., Brüning, J. C., Frahnow, T., Kabisch, S., et al. (2018). VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism 11, 129-136.
Schüler, R., et al., 2018. VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism, 11, p 129-136.
R. Schüler, et al., “VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans”, Molecular Metabolism, vol. 11, 2018, pp. 129-136.
Schüler, R., Seebeck, N., Osterhoff, M.A., Witte, V., Flöel, A., Busjahn, A., Jais, A., Brüning, J.C., Frahnow, T., Kabisch, S., Pivovarova, O., Hornemann, S., Kruse, M., Pfeiffer, A.F.H.: VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism. 11, 129-136 (2018).
Schüler, Rita, Seebeck, Nicole, Osterhoff, Martin A., Witte, Veronica, Flöel, Agnes, Busjahn, Andreas, Jais, Alexander, Brüning, Jens C., Frahnow, Turid, Kabisch, Stefan, Pivovarova, Olga, Hornemann, Silke, Kruse, Michael, and Pfeiffer, Andreas F.H. “VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans”. Molecular Metabolism 11 (2018): 129-136.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Cognitive Control of Eating and Body Weight: It's More Than What You "Think".
Davidson TL, Jones S, Roy M, Stevenson RJ., Front Psychol 10(), 2019
PMID: 30814963
"Liquid Biopsy" of White Matter Hyperintensity in Functionally Normal Elders.
Elahi FM, Casaletto KB, Altendahl M, Staffaroni AM, Fletcher E, Filshtein TJ, Glymour MM, Miller BL, Hinman JD, DeCarli C, Goetzl EJ, Kramer JH., Front Aging Neurosci 10(), 2018
PMID: 30483114

31 References

Daten bereitgestellt von Europe PubMed Central.

Insulin resistance in the brain: an old-age or new-age problem?
Williamson R, McNeilly A, Sutherland C., Biochem. Pharmacol. 84(6), 2012
PMID: 22634336
Obesity is associated with hypothalamic injury in rodents and humans.
Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW., J. Clin. Invest. 122(1), 2011
PMID: 22201683
Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.
Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ., J. Clin. Invest. 119(9), 2009
PMID: 19726875
A mouse model for Glut-1 haploinsufficiency.
Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, Yoo J, Noebels JL, De Vivo DC., Hum. Mol. Genet. 15(7), 2006
PMID: 16497725
GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration.
Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, Sullivan JS, Zhao Z, Meiselman HJ, Wendy RB, Soto J, Abel ED, Makshanoff J, Zuniga E, De Vivo DC, Zlokovic BV., Nat. Neurosci. 18(4), 2015
PMID: 25730668
Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.
Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J, Alber J, Forster CY, Eming SA, Schwaninger M, Ferrara N, Karsenty G, Bruning JC., Cell 166(5), 2016
PMID: 27565353
Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies.
Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, Concas MP, Traglia M, Barbieri C, Ndiaye NC, Stathopoulou MG, Lagou V, Maestrale GB, Sala C, Debette S, Kovacs P, Lind L, Lamont J, Fitzgerald P, Tonjes A, Gudnason V, Toniolo D, Pirastu M, Bellenguez C, Vasan RS, Ingelsson E, Leutenegger AL, Johnson AD, DeStefano AL, Visvikis-Siest S, Seshadri S, Ciullo M., PLoS Genet. 12(2), 2016
PMID: 26910538
Identification of cis- and trans-acting genetic variants explaining up to half the variation in circulating vascular endothelial growth factor levels.
Debette S, Visvikis-Siest S, Chen MH, Ndiaye NC, Song C, Destefano A, Safa R, Azimi Nezhad M, Sawyer D, Marteau JB, Xanthakis V, Siest G, Sullivan L, Pfister M, Smith H, Choi SH, Lamont J, Lind L, Yang Q, Fitzgerald P, Ingelsson E, Vasan RS, Seshadri S., Circ. Res. 109(5), 2011
PMID: 21757650
Caloric restriction improves memory in elderly humans.
Witte AV, Fobker M, Gellner R, Knecht S, Floel A., Proc. Natl. Acad. Sci. U.S.A. 106(4), 2009
PMID: 19171901
High-saturated-fat diet increases circulating angiotensin-converting enzyme, which is enhanced by the rs4343 polymorphism defining persons at risk of nutrient-dependent increases of blood pressure
Schuler R., Osterhoff M.A., Frahnow T., Seltmann A.C., Busjahn A., Kabisch S.., 2017
Memory and epilepsy: characteristics, course, and influence of drugs and surgery.
Helmstaedter C, Kurthen M., Curr. Opin. Neurol. 14(2), 2001
PMID: 11262738

Lezak M.D.., 2004
A common variant highly associated with plasma VEGFA levels also contributes to the variation of both LDL-C and HDL-C.
Stathopoulou MG, Bonnefond A, Ndiaye NC, Azimi-Nezhad M, El Shamieh S, Saleh A, Rancier M, Siest G, Lamont J, Fitzgerald P, Visvikis-Siest S., J. Lipid Res. 54(2), 2012
PMID: 23204297
Dietary fat intake and the risk of incident dementia in the Rotterdam Study.
Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM., Ann. Neurol. 42(5), 1997
PMID: 9392577
Fat intake at midlife and risk of dementia and Alzheimer's disease: a population-based study.
Laitinen MH, Ngandu T, Rovio S, Helkala EL, Uusitalo U, Viitanen M, Nissinen A, Tuomilehto J, Soininen H, Kivipelto M., Dement Geriatr Cogn Disord 22(1), 2006
PMID: 16710090
Dietary fats and the risk of incident Alzheimer disease.
Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Schneider J, Wilson RS., Arch. Neurol. 60(2), 2003
PMID: 12580703
Dietary fat composition and dementia risk.
Morris MC, Tangney CC., Neurobiol. Aging 35 Suppl 2(), 2014
PMID: 24970568
Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia.
Engelhardt S, Patkar S, Ogunshola OO., Br. J. Pharmacol. 171(5), 2014
PMID: 24641185
Activation of receptor-mediated angiogenesis and signaling pathways after VEGF administration in fetal rat CNS explants.
Mani N, Khaibullina A, Krum JM, Rosenstein JM., J. Cereb. Blood Flow Metab. 23(12), 2003
PMID: 14663337
Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells.
Sone H, Deo BK, Kumagai AK., Invest. Ophthalmol. Vis. Sci. 41(7), 2000
PMID: 10845612
Heritability for plasma VEGF concentration in the Stanislas family study.
Berrahmoune H, Herbeth B, Lamont JV, Masson C, Fitzgerald PS, Visvikis-Siest S., Ann. Hum. Genet. 71(Pt 1), 2007
PMID: 17227476
The selfish brain: competition for energy resources.
Fehm HL, Kern W, Peters A., Prog. Brain Res. 153(), 2006
PMID: 16876572
Dietary Fat Intake Modulates Effects of a Frequent ACE Gene Variant on Glucose Tolerance with association to Type 2 Diabetes.
Schuler R, Osterhoff MA, Frahnow T, Mohlig M, Spranger J, Stefanovski D, Bergman RN, Xu L, Seltmann AC, Kabisch S, Hornemann S, Kruse M, Pfeiffer AFH., Sci Rep 7(1), 2017
PMID: 28835639
Vascular endothelial growth factor: a novel endocrine defensive response to hypoglycemia.
Dantz D, Bewersdorf J, Fruehwald-Schultes B, Kern W, Jelkmann W, Born J, Fehm HL, Peters A., J. Clin. Endocrinol. Metab. 87(2), 2002
PMID: 11836329
Identifying amyloid pathology-related cerebrospinal fluid biomarkers for Alzheimer's disease in a multicohort study. Alzheimer's & Dementia: diagnosis
Leung Y.Y., Toledo J.B., Nefedov A., Polikar R., Raghavan N., Xie S.X.., 2015
Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.
Brons C, Jensen CB, Storgaard H, Hiscock NJ, White A, Appel JS, Jacobsen S, Nilsson E, Larsen CM, Astrup A, Quistorff B, Vaag A., J. Physiol. (Lond.) 587(Pt 10), 2009
PMID: 19332493

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29506909
PubMed | Europe PMC

Suchen in

Google Scholar