Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria
Dianetti J, Ferrari G (2019) Center for Mathematical Economics Working Papers; 605.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_605.pdf
543.04 KB
Autor*in
Abstract / Bemerkung
We consider a class of N-player stochastic games of multi-dimensional singular
control, in which each player faces a minimization problem of monotone-follower type with
submodular costs. We call these games monotone-follower games. In a not necessarily
Markovian setting, we establish the existence of Nash equilibria. Moreover, we introduce
a sequence of approximating games by restricting, for each n ∈ ℕ, the players' admissible
strategies to the set of Lipschitz processes with Lipschitz constant bounded by n. We prove
that, for each n ∈ ℕ, there exists a Nash equilibrium of the approximating game and that the
sequence of Nash equilibria converges, in the Meyer-Zheng sense, to a weak (distributional)
Nash equilibrium of the original game of singular control. As a byproduct, such a convergence
also provides approximation results of the equilibrium values across the two classes of games.
We finally show how our results can be employed to prove existence of open-loop Nash
equilibria in an N-player stochastic differential game with singular controls, and we propose
an algorithm to determine a Nash equilibrium for the monotone-follower game.
Stichworte
nonzero-sum games;
singular control;
submodular games;
Meyer-Zheng topology;
maximum principle;
Nash equilibrium;
stochastic differential games;
monotone-follower problem.
Erscheinungsjahr
2019
Serientitel
Center for Mathematical Economics Working Papers
Band
605
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2932994
Zitieren
Dianetti J, Ferrari G. Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria. Center for Mathematical Economics Working Papers. Vol 605. Bielefeld: Center for Mathematical Economics; 2019.
Dianetti, J., & Ferrari, G. (2019). Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria (Center for Mathematical Economics Working Papers, 605). Bielefeld: Center for Mathematical Economics.
Dianetti, Jodi, and Ferrari, Giorgio. 2019. Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria. Vol. 605. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Dianetti, J., and Ferrari, G. (2019). Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria. Center for Mathematical Economics Working Papers, 605, Bielefeld: Center for Mathematical Economics.
Dianetti, J., & Ferrari, G., 2019. Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria, Center for Mathematical Economics Working Papers, no.605, Bielefeld: Center for Mathematical Economics.
J. Dianetti and G. Ferrari, Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria, Center for Mathematical Economics Working Papers, vol. 605, Bielefeld: Center for Mathematical Economics, 2019.
Dianetti, J., Ferrari, G.: Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria. Center for Mathematical Economics Working Papers, 605. Center for Mathematical Economics, Bielefeld (2019).
Dianetti, Jodi, and Ferrari, Giorgio. Nonzero-Sum Submodular Monotone-Follower Games. Existence and Approximation of Nash Equilibria. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 605.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_605.pdf
543.04 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:04Z
MD5 Prüfsumme
aa18c60a9bc0ef43a2a8cc4f5a2f9550