Estimation of grouped, time-varying convergence in economic growth

Haupt H, Schnurbus J, Semmler W (2018)
ECONOMETRICS AND STATISTICS 8(SI): 141-158.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Haupt, Harry; Schnurbus, Joachim; Semmler, WilliUniBi
Abstract / Bemerkung
Classical growth convergence regressions fail to account for various sources of heterogeneity and nonlinearity. Recent contributions advocating nonlinear dynamic factor models remedy these problems by identifying group-specific convergence paths. Similar to statistical clustering methods, those results are sensitive to choices made in the clustering/grouping mechanism. Classical models also do not allow for a time-varying influence of initial endowment on growth. A novel application of a nonparametric regression framework to time-varying, grouped heterogeneity and nonlinearity in growth convergence is proposed. The approach rests upon group-specific transition paths derived from a nonlinear dynamic factor model. Its fully nonparametric nature avoids problems of neglected nonlinearity while alleviating the problem of underspecification of growth convergence regressions. The proposed procedure is backed by an economic rationale for leapfrogging and falling-back of countries due to the time-varying heterogeneity of number, size, and composition of convergence groups. The approach is illustrated by using a current Penn World Table data set. An important aspect of the illustration is empirical evidence for leapfrogging and falling-back of countries, as nonlinearities and heterogeneity in convergence regressions vary over time. (c) 2017 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved.
Erscheinungsjahr
2018
Zeitschriftentitel
ECONOMETRICS AND STATISTICS
Band
8
Ausgabe
SI
Seite(n)
141-158
ISSN
2468-0389
eISSN
2452-3062
Page URI
https://pub.uni-bielefeld.de/record/2932987

Zitieren

Haupt H, Schnurbus J, Semmler W. Estimation of grouped, time-varying convergence in economic growth. ECONOMETRICS AND STATISTICS. 2018;8(SI):141-158.
Haupt, H., Schnurbus, J., & Semmler, W. (2018). Estimation of grouped, time-varying convergence in economic growth. ECONOMETRICS AND STATISTICS, 8(SI), 141-158. doi:10.1016/j.ecosta.2017.09.001
Haupt, Harry, Schnurbus, Joachim, and Semmler, Willi. 2018. “Estimation of grouped, time-varying convergence in economic growth”. ECONOMETRICS AND STATISTICS 8 (SI): 141-158.
Haupt, H., Schnurbus, J., and Semmler, W. (2018). Estimation of grouped, time-varying convergence in economic growth. ECONOMETRICS AND STATISTICS 8, 141-158.
Haupt, H., Schnurbus, J., & Semmler, W., 2018. Estimation of grouped, time-varying convergence in economic growth. ECONOMETRICS AND STATISTICS, 8(SI), p 141-158.
H. Haupt, J. Schnurbus, and W. Semmler, “Estimation of grouped, time-varying convergence in economic growth”, ECONOMETRICS AND STATISTICS, vol. 8, 2018, pp. 141-158.
Haupt, H., Schnurbus, J., Semmler, W.: Estimation of grouped, time-varying convergence in economic growth. ECONOMETRICS AND STATISTICS. 8, 141-158 (2018).
Haupt, Harry, Schnurbus, Joachim, and Semmler, Willi. “Estimation of grouped, time-varying convergence in economic growth”. ECONOMETRICS AND STATISTICS 8.SI (2018): 141-158.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar