Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein

Daniels W, Bouvin J, Busche T, Rückert C, Simoens K, Karamanou S, Van Mellaert L, Frojonsson OH, Nicolai B, Economou A, Kalinowski J, et al. (2018)
MICROBIAL CELL FACTORIES 17(1): 198.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Daniels, Wouter; Bouvin, Jeroen; Busche, TobiasUniBi; Rückert, ChristianUniBi ; Simoens, Kenneth; Karamanou, Spyridoula; Van Mellaert, Lieve; Frojonsson, Olafur H.; Nicolai, Bart; Economou, Anastassios; Kalinowski, Joern; Anne, Jozef
Alle
Abstract / Bemerkung
BackgroundThe Gram-positive Streptomyces lividans TK24 is an attractive host for heterologous protein production because of its high capability to secrete proteinswhich favors correct folding and facilitates downstream processingas well as its acceptance of methylated DNA and its low endogeneous protease activity. However, current inconsistencies in protein yields urge for a deeper understanding of the burden of heterologous protein production on the cell. In the current study, transcriptomics and 13C-based fluxomics were exploited to uncover gene expression and metabolic flux changes associated with heterologous protein production. The Rhodothermus marinus thermostable cellulase A (CelA)previously shown to be successfully overexpressed in S.lividanswas taken as an example protein.ResultsRNA-seq and 13C-based metabolic flux analysis were performed on a CelA-producing and an empty-plasmid strain under the same conditions. Differential gene expression, followed by cluster analysis based on co-expression and co-localization, identified transcriptomic responses related to secretion-induced stress and DNA damage. Furthermore, the OsdR regulon (previously associated with hypoxia, oxidative stress, intercellular signaling, and morphological development) was consistently upregulated in the CelA-producing strain and exhibited co-expression with isoenzymes from the pentose phosphate pathway linked to secondary metabolism. Increased expression of these isoenzymes matches to increased fluxes in the pentose phosphate pathway. Additionally, flux maps of the central carbon metabolism show increased flux through the tricarboxylic acid cycle in the CelA-producing strain. Redirection of fluxes in the CelA-producing strain leads to higher production of NADPH, which can only partly be attributed to increased secretion.ConclusionsTranscriptomic and fluxomic changes uncover potential new leads for targeted strain improvement strategies which may ease the secretion stress and metabolic burden associated with heterologous protein synthesis and secretion, and may help create a more consistently performing S.lividans strain. Yet, links to secondary metabolism and redox balancing should be further investigated to fully understand the S.lividans metabolome under heterologous protein production.
Erscheinungsjahr
2018
Zeitschriftentitel
MICROBIAL CELL FACTORIES
Band
17
Ausgabe
1
Art.-Nr.
198
ISSN
1475-2859
Page URI
https://pub.uni-bielefeld.de/record/2932961

Zitieren

Daniels W, Bouvin J, Busche T, et al. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. MICROBIAL CELL FACTORIES. 2018;17(1): 198.
Daniels, W., Bouvin, J., Busche, T., Rückert, C., Simoens, K., Karamanou, S., Van Mellaert, L., et al. (2018). Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. MICROBIAL CELL FACTORIES, 17(1), 198. doi:10.1186/s12934-018-1040-6
Daniels, Wouter, Bouvin, Jeroen, Busche, Tobias, Rückert, Christian, Simoens, Kenneth, Karamanou, Spyridoula, Van Mellaert, Lieve, et al. 2018. “Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein”. MICROBIAL CELL FACTORIES 17 (1): 198.
Daniels, W., Bouvin, J., Busche, T., Rückert, C., Simoens, K., Karamanou, S., Van Mellaert, L., Frojonsson, O. H., Nicolai, B., Economou, A., et al. (2018). Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. MICROBIAL CELL FACTORIES 17:198.
Daniels, W., et al., 2018. Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. MICROBIAL CELL FACTORIES, 17(1): 198.
W. Daniels, et al., “Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein”, MICROBIAL CELL FACTORIES, vol. 17, 2018, : 198.
Daniels, W., Bouvin, J., Busche, T., Rückert, C., Simoens, K., Karamanou, S., Van Mellaert, L., Frojonsson, O.H., Nicolai, B., Economou, A., Kalinowski, J., Anne, J., Bernaerts, K.: Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. MICROBIAL CELL FACTORIES. 17, : 198 (2018).
Daniels, Wouter, Bouvin, Jeroen, Busche, Tobias, Rückert, Christian, Simoens, Kenneth, Karamanou, Spyridoula, Van Mellaert, Lieve, Frojonsson, Olafur H., Nicolai, Bart, Economou, Anastassios, Kalinowski, Joern, Anne, Jozef, and Bernaerts, Kristel. “Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein”. MICROBIAL CELL FACTORIES 17.1 (2018): 198.

70 References

Daten bereitgestellt von Europe PubMed Central.

Recombinant protein production and streptomycetes.
Anne J, Maldonado B, Van Impe J, Van Mellaert L, Bernaerts K., J. Biotechnol. 158(4), 2011
PMID: 21777629
Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans.
Hamed MB, Karamanou S, Olafsdottir S, Basilio JSM, Simoens K, Tsolis KC, Van Mellaert L, Guðmundsdottir EE, Hreggvidsson GO, Anne J, Bernaerts K, Fridjonsson OH, Economou A., Microb. Cell Fact. 16(1), 2017
PMID: 29274637
Plasmids, recombination and chromosome mapping in Streptomyces lividans 66.
Hopwood DA, Kieser T, Wright HM, Bibb MJ., J. Gen. Microbiol. 129(7), 1983
PMID: 6631413
Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans.
Anne J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K., Biochim. Biophys. Acta 1843(8), 2014
PMID: 24412306
New approaches to achieve high level enzyme production in Streptomyces lividans.
Sevillano L, Vijgenboom E, van Wezel GP, Diaz M, Santamaria RI., Microb. Cell Fact. 15(), 2016
PMID: 26846788
A Streptomyces lividans SipY deficient strain as a host for protein production: standardization of operational alternatives for model proteins
Gabarró MlV, Gullón S, Caminal G, Mellado R, López-Santín J., 2017
Metabolomics investigation of recombinant mTNFα production in Streptomyces lividans.
Muhamadali H, Xu Y, Ellis DI, Trivedi DK, Rattray NJ, Bernaerts K, Goodacre R., Microb. Cell Fact. 14(), 2015
PMID: 26449894
Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations.
D'Huys PJ, Lule I, Van Hove S, Vercammen D, Wouters C, Bernaerts K, Anne J, Van Impe JF., J. Biotechnol. 152(4), 2010
PMID: 20797416
Overproduction of a model Sec- and Tat-dependent secretory protein elicits different cellular responses in Streptomyces lividans
Gullon S, Marin S, Mellado RP., 2015
Fluxomics - connecting 'omics analysis and phenotypes.
Winter G, Kromer JO., Environ. Microbiol. 15(7), 2013
PMID: 23279205
Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism.
Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE., J. Bacteriol. 181(21), 1999
PMID: 10542169
Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12.
Halldorsdottir S, Thorolfsdottir ET, Spilliaert R, Johansson M, Thorbjarnardottir SH, Palsdottir A, Hreggvidsson GO, Kristjansson JK, Holst O, Eggertsson G., Appl. Microbiol. Biotechnol. 49(3), 1998
PMID: 9581291
Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70.
Van Mellaert L, Lammertyn E, Schacht S, Proost P, Van Damme J, Wroblowski B, Anne J, Scarcez T, Sablon E, Raeymaeckers J, Van Broekhoven A., DNA Seq. 9(1), 1998
PMID: 9773272

Kieser T, Bibb M, Buttner MC, Hater K, Hopwood D., 2000
A study of twenty actinophages: morphology, serological relationship and host range
Korn F, Weingärtner B, Kutzner HJ., 1978
Multi-objective experimental design for (13)C-based metabolic flux analysis.
Bouvin J, Cajot S, D'Huys PJ, Ampofo-Asiama J, Anne J, Van Impe J, Geeraerd A, Bernaerts K., Math Biosci 268(), 2015
PMID: 26265092

AUTHOR UNKNOWN, 1994
Complete genome sequence of Streptomyces lividans TK24.
Ruckert C, Albersmeier A, Busche T, Jaenicke S, Winkler A, Friðjonsson OH, Hreggviðsson GO, Lambert C, Badcock D, Bernaerts K, Anne J, Economou A, Kalinowski J., J. Biotechnol. 199(), 2015
PMID: 25680930
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
ReadXplorer--visualization and analysis of mapped sequences.
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A., Bioinformatics 30(16), 2014
PMID: 24790157
Isotopically nonstationary MFA (INST-MFA) of autotrophic metabolism.
Jazmin LJ, O'Grady JP, Ma F, Allen DK, Morgan JA, Young JD., Methods Mol. Biol. 1090(), 2014
PMID: 24222417
Fluxome analysis using GC-MS.
Wittmann C., Microb. Cell Fact. 6(), 2007
PMID: 17286851
(13)C-based metabolic flux analysis.
Zamboni N, Fendt SM, Ruhl M, Sauer U., Nat Protoc 4(6), 2009
PMID: 19478804
Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis.
Antoniewicz MR, Kelleher JK, Stephanopoulos G., Anal. Chem. 79(19), 2007
PMID: 17822305
Correction of 13C mass isotopomer distributions for natural stable isotope abundance.
Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H., J Mass Spectrom 31(3), 1996
PMID: 8799277

Weckwerth W., 2007
IsoCor: correcting MS data in isotope labeling experiments.
Millard P, Letisse F, Sokol S, Portais JC., Bioinformatics 28(9), 2012
PMID: 22419781
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Love MI, Huber W, Anders S., Genome Biol. 15(12), 2014
PMID: 25516281
Controlling the false discover rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995

Neter J, Wasserman W, Kutner MH., 1990

Cheng C-L, Van JW., 1999
13CFLUX2--high-performance software suite for (13)C-metabolic flux analysis.
Weitzel M, Noh K, Dalman T, Niedenfuhr S, Stute B, Wiechert W., Bioinformatics 29(1), 2012
PMID: 23110970
Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
D'Huys PJ, Lule I, Vercammen D, Anne J, Van Impe JF, Bernaerts K., J. Biotechnol. 161(1), 2012
PMID: 22641041
A novel two-component system involved in secretion stress response in Streptomyces lividans
Gullon S, Vicente RL, Mellado RP., 2012
OsdR of Streptomyces coelicolor and the dormancy regulator DevR of Mycobacterium tuberculosis control overlapping regulons
Urem M, van T, Bucca G, Moolenaar GE, Laing E, Swiatek-Polatynska MA, Willemse J, Tenconi E, Rigali S, Goosen N, Smith CP, van GP., 2016
Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling.
Sasaki Y, Oguchi H, Kobayashi T, Kusama S, Sugiura R, Moriya K, Hirata T, Yukioka Y, Takaya N, Yajima S, Ito S, Okada K, Ohsawa K, Ikeda H, Takano H, Ueda K, Shoun H., Sci Rep 6(), 2016
PMID: 26912114
Oxygen-dependent control of respiratory nitrate reduction in mycelium of Streptomyces coelicolor A3(2).
Fischer M, Falke D, Pawlik T, Sawers RG., J. Bacteriol. 196(23), 2014
PMID: 25225271
Cytochrome bd oxidase and hydrogen peroxide resistance in Mycobacterium tuberculosis
Forte E, Borisov VB, Davletshin A, Mastronicola D, Sarti P, Giuffre A., 2013
Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress.
Giuffre A, Borisov VB, Arese M, Sarti P, Forte E., Biochim. Biophys. Acta 1837(7), 2014
PMID: 24486503
Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis
Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE, Boshoff HI., 2011
The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in streptomyces coelicolor.
Swiatek MA, Gubbens J, Bucca G, Song E, Yang YH, Laing E, Kim BG, Smith CP, van Wezel GP., J. Bacteriol. 195(6), 2013
PMID: 23292782
Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor.
Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF., Mol. Microbiol. 46(4), 2002
PMID: 12421300
The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor.
Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN, Kao CM, Buttner MJ., Genes Dev. 17(14), 2003
PMID: 12832397
NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor.
de Jong W, Manteca A, Sanchez J, Bucca G, Smith CP, Dijkhuizen L, Claessen D, Wosten HA., Mol. Microbiol. 71(6), 2009
PMID: 19222756
Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism.
Borodina I, Krabben P, Nielsen J., Genome Res. 15(6), 2005
PMID: 15930493
The three Streptomyces lividans HtrA-Like proteases involved in the secretion stress response act in a cooperative manner
Vicente RL, Gullon S, Marin S, Mellado RP., 2016
The extracellular proteome of Bacillus subtilis under secretion stress conditions.
Antelmann H, Darmon E, Noone D, Veening JW, Westers H, Bron S, Kuipers OP, Devine KM, Hecker M, van Dijl JM., Mol. Microbiol. 49(1), 2003
PMID: 12823817
Membrane protein stability depends on the concentration of compatible solutes--a single molecule force spectroscopic study.
Roychoudhury A, Bieker A, Haussinger D, Oesterhelt F., Biol. Chem. 394(11), 2013
PMID: 24021596
Glucose utilization by Streptomyces griseus.
HOCKENHULL DJ, FANTES KH, HERBERT M, WHITEHEAD B., J. Gen. Microbiol. 10(3), 1954
PMID: 13174760
ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation.
van Wezel GP, van der Meulen J, Kawamoto S, Luiten RG, Koerten HK, Kraal B., J. Bacteriol. 182(20), 2000
PMID: 11004161
Model based engineering of Pichia pastoris central metabolism enhances recombinant protein production.
Nocon J, Steiger MG, Pfeffer M, Sohn SB, Kim TY, Maurer M, Rußmayer H, Pflugl S, Ask M, Haberhauer-Troyer C, Ortmayr K, Hann S, Koellensperger G, Gasser B, Lee SY, Mattanovich D., Metab. Eng. 24(), 2014
PMID: 24853352
Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.
Nocon J, Steiger M, Mairinger T, Hohlweg J, Rußmayer H, Hann S, Gasser B, Mattanovich D., Appl. Microbiol. Biotechnol. 100(13), 2016
PMID: 27020289
13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H., J. Biotechnol. 179(), 2014
PMID: 24667539
Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity.
Auriol C, Bestel-Corre G, Claude JB, Soucaille P, Meynial-Salles I., Proc. Natl. Acad. Sci. U.S.A. 108(4), 2011
PMID: 21205901
Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146
Coze F, Gilard F, Tcherkez G, Virolle MJ, Guyonvarch A., 2013
NADPH-generating systems in bacteria and archaea.
Spaans SK, Weusthuis RA, van der Oost J, Kengen SW., Front Microbiol 6(), 2015
PMID: 26284036
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30577858
PubMed | Europe PMC

Suchen in

Google Scholar