Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation

Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D (2018)
Genes 9(12): 616.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.84 MB
Mateos, Julieta Lisa; de Leone, Maria José; Torchio, Jeanette; Reichel, MarleneUniBi; Staiger, DorotheeUniBi
Abstract / Bemerkung
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana
circadian; post-transcriptional; RNA; splicing; RNA-binding proteins
Page URI


Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D. Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation. Genes. 2018;9(12): 616.
Mateos, J. L., de Leone, M. J., Torchio, J., Reichel, M., & Staiger, D. (2018). Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation. Genes, 9(12), 616. doi:10.3390/genes9120616
Mateos, J. L., de Leone, M. J., Torchio, J., Reichel, M., and Staiger, D. (2018). Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation. Genes 9:616.
Mateos, J.L., et al., 2018. Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation. Genes, 9(12): 616.
J.L. Mateos, et al., “Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation”, Genes, vol. 9, 2018, : 616.
Mateos, J.L., de Leone, M.J., Torchio, J., Reichel, M., Staiger, D.: Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation. Genes. 9, : 616 (2018).
Mateos, Julieta Lisa, de Leone, Maria José, Torchio, Jeanette, Reichel, Marlene, and Staiger, Dorothee. “Beyond Transcription: Fine-Tuning of Circadian timekeeping by post-transcriptional regulation”. Genes 9.12 (2018): 616.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980

140 References

Daten bereitgestellt von Europe PubMed Central.

Plant circadian rhythms.
McClung CR., Plant Cell 18(4), 2006
PMID: 16595397
Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities.
Bloch G, Bar-Shai N, Cytter Y, Green R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372(1734), 2017
PMID: 28993499
Molecular mechanisms at the core of the plant circadian oscillator.
Nohales MA, Kay SA., Nat. Struct. Mol. Biol. 23(12), 2016
PMID: 27922614
On the move through time - a historical review of plant clock research.
Johansson M, Koster T., Plant Biol (Stuttg) 21 Suppl 1(), 2018
PMID: 29607587
Time to Network: The Molecular Blueprint of the Circadian Timing System in Plants
Danisman S., Mateos J.L., Staiger D.., 2015
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.
Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22315425
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Huang W, Perez-Garcia P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P., Science 336(6077), 2012
PMID: 22403178
Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock.
Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA., Curr. Biol. 15(1), 2005
PMID: 15649364
EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock.
Herrero E, Kolmos E, Bujdoso N, Yuan Y, Wang M, Berns MC, Uhlworm H, Coupland G, Saini R, Jaskolski M, Webb A, Goncalves J, Davis SJ., Plant Cell 24(2), 2012
PMID: 22327739
Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis.
Dixon LE, Knox K, Kozma-Bognar L, Southern MM, Pokhilko A, Millar AJ., Curr. Biol. 21(2), 2011
PMID: 21236675
LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock.
Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA., Curr. Biol. 21(2), 2011
PMID: 21236673
Phase-specific circadian clock regulatory elements in Arabidopsis.
Michael TP, McClung CR., Plant Physiol. 130(2), 2002
PMID: 12376630
Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression.
Zhong HH, Resnick AS, Straume M, Robertson McClung C., Plant Cell 9(6), 1997
PMID: 9212468
Transcriptional and post-transcriptional control of the plant circadian gene regulatory network.
Hernando CE, Romanowski A, Yanovsky MJ., Biochim Biophys Acta Gene Regul Mech 1860(1), 2016
PMID: 27412912
RNA around the clock - regulation at the RNA level in biological timing.
Nolte C, Staiger D., Front Plant Sci 6(), 2015
PMID: 25999975
Circadian rhythms and post-transcriptional regulation in higher plants.
Romanowski A, Yanovsky MJ., Front Plant Sci 6(), 2015
PMID: 26124767
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356(1415), 2001
PMID: 11710982
The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator.
Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z., Front Plant Sci 3(), 2012
PMID: 22639636
Spliceosome structure and function.
Will CL, Luhrmann R., Cold Spring Harb Perspect Biol 3(7), 2011
PMID: 21441581
Shaping the Arabidopsis Transcriptome through Alternative Splicing
Staiger D.., 2015
RNA-based regulation in the plant circadian clock.
Staiger D, Green R., Trends Plant Sci. 16(10), 2011
PMID: 21782493
Role for LSM genes in the regulation of circadian rhythms.
Perez-Santangelo S, Mancini E, Francey LJ, Schlaen RG, Chernomoretz A, Hogenesch JB, Yanovsky MJ., Proc. Natl. Acad. Sci. U.S.A. 111(42), 2014
PMID: 25288739
Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.
Hong S, Song HR, Lutz K, Kerstetter RA, Michael TP, McClung CR., Proc. Natl. Acad. Sci. U.S.A. 107(49), 2010
PMID: 21097700
A methyl transferase links the circadian clock to the regulation of alternative splicing.
Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Godoy Herz MA, Depetris-Chauvin A, Simpson CG, Brown JW, Cerdan PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ., Nature 468(7320), 2010
PMID: 20962777
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing.
Deng X, Gu L, Liu C, Lu T, Lu F, Lu Z, Cui P, Pei Y, Wang B, Hu S, Cao X., Proc. Natl. Acad. Sci. U.S.A. 107(44), 2010
PMID: 20956294
The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins.
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G., Mol. Cell. Biol. 21(24), 2001
PMID: 11713266
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis.
Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, Ma L., Plant Cell 24(8), 2012
PMID: 22942380
Mutation of Arabidopsis spliceosomal timekeeper locus1 causes circadian clock defects.
Jones MA, Williams BA, McNicol J, Simpson CG, Brown JW, Harmer SL., Plant Cell 24(10), 2012
PMID: 23110899
The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms.
Schlaen RG, Mancini E, Sanchez SE, Perez-Santangelo S, Rugnone ML, Simpson CG, Brown JW, Zhang X, Chernomoretz A, Yanovsky MJ., Proc. Natl. Acad. Sci. U.S.A. 112(30), 2015
PMID: 26170331
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.
James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI, Herzyk P, Brown JW, Nimmo HG., Plant Cell 24(3), 2012
PMID: 22408072
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis.
MacGregor DR, Gould P, Foreman J, Griffiths J, Bird S, Page R, Stewart K, Steel G, Young J, Paszkiewicz K, Millar AJ, Halliday KJ, Hall AJ, Penfield S., Plant Cell 25(11), 2013
PMID: 24254125
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schuttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlubbert M, Sauer M, Schuttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY.
Kim JY, Song HR, Taylor BL, Carre IA., EMBO J. 22(4), 2003
PMID: 12574129
Dynamic Light Regulation of Translation Status in Arabidopsis thaliana.
Juntawong P, Bailey-Serres J., Front Plant Sci 3(), 2012
PMID: 22645595
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays.
Hazen SP, Naef F, Quisel T, Gendron JM, Chen H, Ecker JR, Borevitz JO, Kay SA., Genome Biol. 10(2), 2009
PMID: 19210792
The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis.
Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM., Plant Cell 19(9), 2007
PMID: 17890372
Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398.
Sire C, Moreno AB, Garcia-Chapa M, Lopez-Moya JJ, San Segundo B., FEBS Lett. 583(6), 2009
PMID: 19236868
Regulation of flowering time by the protein arginine methyltransferase AtPRMT10.
Niu L, Lu F, Pei Y, Liu C, Cao X., EMBO Rep. 8(12), 2007
PMID: 18007657
SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis.
Wang X, Zhang Y, Ma Q, Zhang Z, Xue Y, Bao S, Chong K., EMBO J. 26(7), 2007
PMID: 17363895
Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis.
Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK., Dev. Cell 1(6), 2001
PMID: 11740939
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC., Genome Res. 20(1), 2009
PMID: 19858364
ELF3 modulates resetting of the circadian clock in Arabidopsis.
Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA., Plant Cell 13(6), 2001
PMID: 11402162
Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis.
Yanovsky MJ, Mazzella MA, Whitelam GC, Casal JJ., J. Biol. Rhythms 16(6), 2001
PMID: 11760010
The nonsense-mediated decay RNA surveillance pathway.
Chang YF, Imam JS, Wilkinson MF., Annu. Rev. Biochem. 76(), 2007
PMID: 17352659
Messenger RNA regulation: to translate or to degrade.
Shyu AB, Wilkinson MF, van Hoof A., EMBO J. 27(3), 2008
PMID: 18256698
Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay.
Kerenyi Z, Merai Z, Hiripi L, Benkovics A, Gyula P, Lacomme C, Barta E, Nagy F, Silhavy D., EMBO J. 27(11), 2008
PMID: 18451801
Context analysis of termination codons in mRNA that are recognized by plant NMD.
Hori K, Watanabe Y., Plant Cell Physiol. 48(7), 2007
PMID: 17567637
Stability of plant mRNAs depends on the length of the 3'-untranslated region.
Schwartz AM, Komarova TV, Skulachev MV, Zvereva AS, Dorokhov IuL, Atabekov JG., Biochemistry Mosc. 71(12), 2006
PMID: 17223792
Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants.
Kertesz S, Kerenyi Z, Merai Z, Bartos I, Palfy T, Barta E, Silhavy D., Nucleic Acids Res. 34(21), 2006
PMID: 17088291
UPF1 is required for nonsense-mediated mRNA decay (NMD) and RNAi in Arabidopsis.
Arciga-Reyes L, Wootton L, Kieffer M, Davies B., Plant J. 47(3), 2006
PMID: 16813578
UPF3 suppresses aberrant spliced mRNA in Arabidopsis.
Hori K, Watanabe Y., Plant J. 43(4), 2005
PMID: 16098107
Arabidopsis SMG7 protein is required for exit from meiosis.
Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K., J. Cell. Sci. 121(Pt 13), 2008
PMID: 18544632
Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway.
Lidder P, Gutierrez RA, Salome PA, McClung CR, Green PJ., Plant Physiol. 138(4), 2005
PMID: 16055688
PRD-1, a Component of the Circadian System of Neurospora crassa, Is a Member of the DEAD-box RNA Helicase Family.
Adhvaryu K, Firoozi G, Motavaze K, Lakin-Thomas P., J. Biol. Rhythms 31(3), 2016
PMID: 27029286
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms.
Wu Y, Zhang Y, Sun Y, Yu J, Wang P, Ma H, Chen S, Ma L, Zhang D, He Q, Guo J., Genetics 206(4), 2017
PMID: 28600326
The salicylic acid dependent and independent effects of NMD in plants.
Rayson S, Ashworth M, de Torres Zabala M, Grant M, Davies B., Plant Signal Behav 7(11), 2012
PMID: 22990450
Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response.
Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K., Nucleic Acids Res. 40(12), 2012
PMID: 22379136
Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay.
Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O'Brien G, Shiue L, Clark TA, Blume JE, Ares M Jr., Genes Dev. 21(6), 2007
PMID: 17369403
Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements.
Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE., Nature 446(7138), 2007
PMID: 17361132
Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis.
Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JW., Nucleic Acids Res. 40(6), 2011
PMID: 22127866
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Koster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol. 18(1), 2017
PMID: 29084609
Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.
Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA., Curr. Biol. 12(9), 2002
PMID: 12007421
The molecular basis of temperature compensation in the Arabidopsis circadian clock.
Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A., Plant Cell 18(5), 2006
PMID: 16617099
Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions.
Raices M, D'Angelo MA., Nat. Rev. Mol. Cell Biol. 13(11), 2012
PMID: 23090414
Identification and characterization of nuclear pore complex components in Arabidopsis thaliana.
Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I., Plant Cell 22(12), 2010
PMID: 21189294
Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis.
Cheng YT, Germain H, Wiermer M, Bi D, Xu F, Garcia AV, Wirthmueller L, Despres C, Parker JE, Zhang Y, Li X., Plant Cell 21(8), 2009
PMID: 19700630
Putative members of the Arabidopsis Nup107-160 nuclear pore sub-complex contribute to pathogen defense.
Wiermer M, Cheng YT, Imkampe J, Li M, Wang D, Lipka V, Li X., Plant J. 70(5), 2012
PMID: 22288649
A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis.
Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J., Proc. Natl. Acad. Sci. U.S.A. 103(2), 2006
PMID: 16407163
NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus.
Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M., Plant Cell 19(2), 2007
PMID: 17307929
NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development.
Groth M, Takeda N, Perry J, Uchida H, Draxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M., Plant Cell 22(7), 2010
PMID: 20675572
The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.
Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK., Proc. Natl. Acad. Sci. U.S.A. 103(21), 2006
PMID: 16702557
A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress.
Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK., Mol. Cell. Biol. 26(24), 2006
PMID: 17030626
mRNA degradation machines in eukaryotic cells.
Tourriere H, Chebli K, Tazi J., Biochimie 84(8), 2002
PMID: 12457569
Nucleo-cytosolic Shuttling of ARGONAUTE1 Prompts a Revised Model of the Plant MicroRNA Pathway.
Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O., Mol. Cell 69(4), 2018
PMID: 29398448
A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export.
Izaurralde E, Jarmolowski A, Beisel C, Mattaj IW, Dreyfuss G, Fischer U., J. Cell Biol. 137(1), 1997
PMID: 9105034
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Alternative polyadenylation of antisense RNAs and flowering time control.
Hornyik C, Duc C, Rataj K, Terzi LC, Simpson GG., Biochem. Soc. Trans. 38(4), 2010
PMID: 20659007
Alternative polyadenylation of mRNA precursors.
Tian B, Manley JL., Nat. Rev. Mol. Cell Biol. 18(1), 2016
PMID: 27677860
Vasopressin mRNA in the suprachiasmatic nuclei: daily regulation of polyadenylate tail length.
Robinson BG, Frim DM, Schwartz WJ, Majzoub JA., Science 241(4863), 1988
PMID: 3388044
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression.
Kojima S, Sher-Chen EL, Green CB., Genes Dev. 26(24), 2012
PMID: 23249735
Novel alternative splicing of mRNAs encoding poly(A) polymerases in Arabidopsis.
Addepalli B, Meeks LR, Forbes KP, Hunt AG., Biochim. Biophys. Acta 1679(2), 2004
PMID: 15297145
Kill the messenger: mRNA decay and plant development.
Belostotsky DA, Sieburth LE., Curr. Opin. Plant Biol. 12(1), 2008
PMID: 18990607
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light.
Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, David K, Putterill J, Nam HG, Somers DE., Nature 449(7160), 2007
PMID: 17704763
Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE., Front Plant Sci 7(), 2016
PMID: 27462335
Circadian orchestration of the hepatic proteome.
Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O'Neill JS, Wong GK, Chesham J, Odell M, Lilley KS, Kyriacou CP, Hastings MH., Curr. Biol. 16(11), 2006
PMID: 16753565
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading.
Missra A, Ernest B, Lohoff T, Jia Q, Satterlee J, Ke K, von Arnim AG., Plant Cell 27(9), 2015
PMID: 26392078
Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation.
Graf A, Coman D, Uhrig RG, Walsh S, Flis A, Stitt M, Gruissem W., Open Biol 7(3), 2017
PMID: 28250106
Role for antisense RNA in regulating circadian clock function in Neurospora crassa.
Kramer C, Loros JJ, Dunlap JC, Crosthwaite SK., Nature 421(6926), 2003
PMID: 12607002
Circadian control of ORE1 by PRR9 positively regulates leaf senescence in Arabidopsis.
Kim H, Kim HJ, Vu QT, Jung S, McClung CR, Hong S, Nam HG., Proc. Natl. Acad. Sci. U.S.A. 115(33), 2018
PMID: 30065116
Molecular basis of seasonal time measurement in Arabidopsis.
Yanovsky MJ, Kay SA., Nature 419(6904), 2002
PMID: 12239570
The 'how' and 'where' of plant microRNAs.
Yu Y, Jia T, Chen X., New Phytol. 216(4), 2017
PMID: 29048752
A role for microRNAs in the Drosophila circadian clock.
Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, Vagin VV, Zamore PD, Nelson SB, Rosbash M., Genes Dev. 23(18), 2009
PMID: 19696147
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Koster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res. 42(15), 2014
PMID: 25104024
Plant Ribonomics: Proteins in Search of RNA Partners.
Koster T, Meyer K., Trends Plant Sci. 23(4), 2018
PMID: 29429586
Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation.
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X., Cell Res. 25(7), 2015
PMID: 26099751
Taking the next step: building an Arabidopsis information portal.
International Arabidopsis Informatics Consortium., Plant Cell 24(6), 2012
PMID: 22751211
The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3.
McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, Guttman M., Nature 521(7551), 2015
PMID: 25915022
Specific RNP capture with antisense LNA/DNA mixmers.
Rogell B, Fischer B, Rettel M, Krijgsveld J, Castello A, Hentze MW., RNA 23(8), 2017
PMID: 28476952
TRiP: Tracking Rhythms in Plants, an automated leaf movement analysis program for circadian period estimation.
Greenham K, Lou P, Remsen SE, Farid H, McClung CR., Plant Methods 11(), 2015
PMID: 26019715
Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.
Dornbusch T, Michaud O, Xenarios I, Fankhauser C., Plant Cell 26(10), 2014
PMID: 25281688


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 30544736
PubMed | Europe PMC

Suchen in

Google Scholar