High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling

Chen K, Razinskas G, Vieker H, Gross H, Wu X, Beyer A, Gölzhäuser A, Hecht B (2018)
NANOSCALE 10(36): 17148-17155.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chen, Kai; Razinskas, Gary; Vieker, HenningUniBi; Gross, Heiko; Wu, Xiaofei; Beyer, AndréUniBi ; Gölzhäuser, ArminUniBi ; Hecht, Bert
Abstract / Bemerkung
Helium ion milling of chemically-synthesized micron-sized gold flakes is performed to fabricate ultra-narrow nanoslit cavities with a varying length and width down to 5 nm. Their plasmon resonances are characterized by one-photon photoluminescence spectroscopy. The combination of fabrication based on single-crystalline gold and resonant modes with low radiative losses leads to remarkably high quality factors of up to 24. Multiple Fabry-Perot-type resonances in the visible/near infrared spectral range are observed due to the achieved narrow slit widths and the resulting short effective wavelengths of nanoslit plasmons. These features make nanoslit cavities attractive for a range of applications such as surface-enhanced spectroscopy, ultrafast nano-optics and strong light-matter coupling.
Erscheinungsjahr
2018
Zeitschriftentitel
NANOSCALE
Band
10
Ausgabe
36
Seite(n)
17148-17155
ISSN
2040-3364
eISSN
2040-3372
Page URI
https://pub.uni-bielefeld.de/record/2932798

Zitieren

Chen K, Razinskas G, Vieker H, et al. High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. NANOSCALE. 2018;10(36):17148-17155.
Chen, K., Razinskas, G., Vieker, H., Gross, H., Wu, X., Beyer, A., Gölzhäuser, A., et al. (2018). High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. NANOSCALE, 10(36), 17148-17155. doi:10.1039/c8nr02160k
Chen, Kai, Razinskas, Gary, Vieker, Henning, Gross, Heiko, Wu, Xiaofei, Beyer, André, Gölzhäuser, Armin, and Hecht, Bert. 2018. “High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling”. NANOSCALE 10 (36): 17148-17155.
Chen, K., Razinskas, G., Vieker, H., Gross, H., Wu, X., Beyer, A., Gölzhäuser, A., and Hecht, B. (2018). High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. NANOSCALE 10, 17148-17155.
Chen, K., et al., 2018. High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. NANOSCALE, 10(36), p 17148-17155.
K. Chen, et al., “High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling”, NANOSCALE, vol. 10, 2018, pp. 17148-17155.
Chen, K., Razinskas, G., Vieker, H., Gross, H., Wu, X., Beyer, A., Gölzhäuser, A., Hecht, B.: High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling. NANOSCALE. 10, 17148-17155 (2018).
Chen, Kai, Razinskas, Gary, Vieker, Henning, Gross, Heiko, Wu, Xiaofei, Beyer, André, Gölzhäuser, Armin, and Hecht, Bert. “High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling”. NANOSCALE 10.36 (2018): 17148-17155.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

55 References

Daten bereitgestellt von Europe PubMed Central.

Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots.
Alonso-Gonzalez P, Albella P, Schnell M, Chen J, Huth F, Garcia-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso LE, Aizpurua J, Hillenbrand R., Nat Commun 3(), 2012
PMID: 22353715
Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
Neubrech F, Huck C, Weber K, Pucci A, Giessen H., Chem. Rev. 117(7), 2017
PMID: 28358482
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation.
Celebrano M, Wu X, Baselli M, Großmann S, Biagioni P, Locatelli A, De Angelis C, Cerullo G, Osellame R, Hecht B, Duo L, Ciccacci F, Finazzi M., Nat Nanotechnol 10(5), 2015
PMID: 25895003
Augmenting second harmonic generation using Fano resonances in plasmonic systems.
Thyagarajan K, Butet J, Martin OJ., Nano Lett. 13(4), 2013
PMID: 23534924
Giant nonlinear optical activity in a plasmonic metamaterial.
Ren M, Plum E, Xu J, Zheludev NI., Nat Commun 3(), 2012
PMID: 22588295
Single-molecule strong coupling at room temperature in plasmonic nanocavities.
Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ., Nature 535(7610), 2016
PMID: 27296227
Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2.
Zheng D, Zhang S, Deng Q, Kang M, Nordlander P, Xu H., Nano Lett. 17(6), 2017
PMID: 28530102
Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas.
Aouani H, Sipova H, Rahmani M, Navarro-Cia M, Hegnerova K, Homola J, Hong M, Maier SA., ACS Nano 7(1), 2012
PMID: 23199257
Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas.
Abb M, Wang Y, Albella P, de Groot CH, Aizpurua J, Muskens OL., ACS Nano 6(7), 2012
PMID: 22708624
Coherent control of light scattering from nanostructured materials by second-harmonic generation.
Rodrigo SG, Harutyunyan H, Novotny L., Phys. Rev. Lett. 110(17), 2013
PMID: 23679776
Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
Zhang S, Li GC, Chen Y, Zhu X, Liu SD, Lei DY, Duan H., ACS Nano 10(12), 2016
PMID: 28024358

Santhosh, 2016

Kongsuwan, ACS Photonics 5(), 2018

García, Rev. Mod. Phys. 79(), 2007

Garcia-Vidal, Rev. Mod. Phys. 82(), 2010

Wenger, 2013

Zhang, Appl. Phys. Lett. 100(), 2012

Yang, ACS Photonics 1(), 2014

Huck, ACS Photonics 2(), 2015
Multipolar interference for directed light emission.
Hancu IM, Curto AG, Castro-Lopez M, Kuttge M, van Hulst NF., Nano Lett. 14(1), 2013
PMID: 24279805
Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures.
Lu G, Li W, Zhang T, Yue S, Liu J, Hou L, Li Z, Gong Q., ACS Nano 6(2), 2012
PMID: 22247937
Optical resonances of bowtie slot antennas and their geometry and material dependence.
Guo H, Meyrath TP, Zentgraf T, Liu N, Fu L, Schweizer H, Giessen H., Opt Express 16(11), 2008
PMID: 18545486

Degiron, Opt. Commun. 239(), 2004
Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications.
Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB., Small 7(12), 2011
PMID: 21520499
Attomolar protein detection using in-hole surface plasmon resonance.
Ferreira J, Santos MJ, Rahman MM, Brolo AG, Gordon R, Sinton D, Girotto EM., J. Am. Chem. Soc. 131(2), 2009
PMID: 19140784
An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media.
Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H., Nano Lett. 10(12), 2010
PMID: 21053965

Juan, Nat. Photonics 5(), 2011

Ward, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 24(), 2006
Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography.
Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L, Bao W, Ogletree DF, Schuck PJ, Cabrini S, Weber-Bargioni A., Nano Lett. 13(6), 2013
PMID: 23617768
Split-ball resonator as a three-dimensional analogue of planar split-rings.
Kuznetsov AI, Miroshnichenko AE, Fu YH, Viswanathan V, Rahmani M, Valuckas V, Pan ZY, Kivshar Y, Pickard DS, Luk'yanchuk B., Nat Commun 5(), 2014
PMID: 24430506
Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling.
Wang Y, Abb M, Boden SA, Aizpurua J, de Groot CH, Muskens OL., Nano Lett. 13(11), 2013
PMID: 24127754
Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
Kollmann H, Piao X, Esmann M, Becker SF, Hou D, Huynh C, Kautschor LO, Bosker G, Vieker H, Beyer A, Golzhauser A, Park N, Vogelgesang R, Silies M, Lienau C., Nano Lett. 14(8), 2014
PMID: 25051422

Hlawacek, 2016
Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
Chen Y, Bi K, Wang Q, Zheng M, Liu Q, Han Y, Yang J, Chang S, Zhang G, Duan H., ACS Nano 10(12), 2016
PMID: 28024375
Nanoantennas for visible and infrared radiation.
Biagioni P, Huang JS, Hecht B., Rep Prog Phys 75(2), 2012
PMID: 22790344

Chandran, Phys. Rev. B: Condens. Matter Mater. Phys. 85(), 2012
Plasmon-modulated photoluminescence of individual gold nanostructures.
Hu H, Duan H, Yang JK, Shen ZX., ACS Nano 6(11), 2012
PMID: 23072661
Luminescence quantum yield of single gold nanorods.
Yorulmaz M, Khatua S, Zijlstra P, Gaiduk A, Orrit M., Nano Lett. 12(8), 2012
PMID: 22775068
Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio.
Fang Y, Chang WS, Willingham B, Swanglap P, Dominguez-Medina S, Link S., ACS Nano 6(8), 2012
PMID: 22830934
How Light Is Emitted by Plasmonic Metals.
Mertens J, Kleemann ME, Chikkaraddy R, Narang P, Baumberg JJ., Nano Lett. 17(4), 2017
PMID: 28267346

Tcherniak, J. Phys. Chem. C 115(), 2011
Correlated absorption and photoluminescence of single gold nanoparticles.
Gaiduk A, Yorulmaz M, Orrit M., Chemphyschem 12(8), 2011
PMID: 21500336

Kinkhabwala, Nat. Photonics 3(), 2009

Novotny, 2012
Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators.
Sauvan C, Hugonin JP, Maksymov IS, Lalanne P., Phys. Rev. Lett. 110(23), 2013
PMID: 25167528
Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.
Kleemann ME, Chikkaraddy R, Alexeev EM, Kos D, Carnegie C, Deacon W, de Pury AC, Große C, de Nijs B, Mertens J, Tartakovskii AI, Baumberg JJ., Nat Commun 8(1), 2017
PMID: 29101317
Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.
Huang JS, Callegari V, Geisler P, Bruning C, Kern J, Prangsma JC, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B., Nat Commun 1(), 2010
PMID: 21267000
Electromechanically Tunable Suspended Optical Nanoantenna.
Chen K, Razinskas G, Feichtner T, Grossmann S, Christiansen S, Hecht B., Nano Lett. 16(4), 2016
PMID: 27002492

Wu, Cryst. Res. Technol. 50(), 2015

Johnson, Phys. Rev. B: Solid State 6(), 1972
An analytic model for the optical properties of gold.
Etchegoin PG, Le Ru EC, Meyer M., J Chem Phys 125(16), 2006
PMID: 17092118
Impedance matching and emission properties of nanoantennas in an optical nanocircuit.
Huang JS, Feichtner T, Biagioni P, Hecht B., Nano Lett. 9(5), 2009
PMID: 19338279
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30183794
PubMed | Europe PMC

Suchen in

Google Scholar