Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality

Walhorn V, Möller A-K, Bartz C, Dierks T, Anselmetti D (2018)
Scientific Reports 8(1): 16849.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In non-covalent biological adhesion, molecular bonds commonly exhibit a monotonously decreasing life time when subjected to tensile forces (slip bonds). In contrast, catch bonds behave counter intuitively, as they show an increased life time within a certain force interval. To date only a hand full of catch bond displaying systems have been identified. In order to unveil their nature, a number of structural and phenomenological models have been introduced. Regardless of the individual causes for catch bond behavior, it appears evident that the free energy landscapes of these interactions bear more than one binding state. Here, we investigated the catch bond interaction between the hydrophilic domain of the human cell surface sulfatase 1 (Sulf1HD) and its physiological substrate heparan sulfate (HS) by atomic force microscopy based single molecule force spectroscopy (AFM-SMFS). Using Jarzynski's equality, we estimated the associated Gibbs free energy and provide a comprehensive thermodynamic and kinetic characterization of Sulf1HD/HS interaction. Interestingly, the binding potential landscape exhibits two distinct potential wells which confirms the recently suggested two state binding. Even though structural data of Sulf1HD is lacking, our results allow to draft a detailed picture of the directed and processive desulfation of HS.
Scientific Reports
Page URI


Walhorn V, Möller A-K, Bartz C, Dierks T, Anselmetti D. Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Scientific Reports. 2018;8(1): 16849.
Walhorn, V., Möller, A. - K., Bartz, C., Dierks, T., & Anselmetti, D. (2018). Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Scientific Reports, 8(1), 16849. doi:10.1038/s41598-018-35120-0
Walhorn, V., Möller, A. - K., Bartz, C., Dierks, T., and Anselmetti, D. (2018). Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Scientific Reports 8:16849.
Walhorn, V., et al., 2018. Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Scientific Reports, 8(1): 16849.
V. Walhorn, et al., “Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality”, Scientific Reports, vol. 8, 2018, : 16849.
Walhorn, V., Möller, A.-K., Bartz, C., Dierks, T., Anselmetti, D.: Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality. Scientific Reports. 8, : 16849 (2018).
Walhorn, Volker, Möller, Ann-Kristin, Bartz, Christian, Dierks, Thomas, and Anselmetti, Dario. “Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality”. Scientific Reports 8.1 (2018): 16849.

45 References

Daten bereitgestellt von Europe PubMed Central.

Models for the specific adhesion of cells to cells.
Bell GI., Science 200(4342), 1978
PMID: 347575
Specific antigen/antibody interactions measured by force microscopy.
Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Guntherodt HJ., Biophys. J. 70(5), 1996
PMID: 9172770
Supramolecular chemistry at the single-molecule level.
Eckel R, Ros R, Decker B, Mattay J, Anselmetti D., Angew. Chem. Int. Ed. Engl. 44(3), 2005
PMID: 15624136
Adhesion forces between individual ligand-receptor pairs.
Florin EL, Moy VT, Gaub HE., Science 264(5157), 1994
PMID: 8153628
Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
Harder A, Walhorn V, Dierks T, Fernandez-Busquets X, Anselmetti D., Biophys. J. 99(10), 2010
PMID: 21081100
Intermolecular forces and energies between ligands and receptors.
Moy VT, Florin EL, Gaub HE., Science 266(5183), 1994
PMID: 7939660
Detection and localization of individual antibody-antigen recognition events by atomic force microscopy.
Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H., Proc. Natl. Acad. Sci. U.S.A. 93(8), 1996
PMID: 8622961
Functional characterization of a supramolecular affinity switch at the single molecule level.
Walhorn V, Schafer C, Schroder T, Mattay J, Anselmetti D., Nanoscale 3(11), 2011
PMID: 22009325
Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics.
Dieding M, Debus JD, Kerkhoff R, Gaertner-Rommel A, Walhorn V, Milting H, Anselmetti D., Sci Rep 7(1), 2017
PMID: 29062102
Direct observation of catch bonds involving cell-adhesion molecules.
Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C., Nature 423(6936), 2003
PMID: 12736689
Bacterial adhesion to target cells enhanced by shear force.
Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV., Cell 109(7), 2002
PMID: 12110187
Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction.
Guo B, Guilford WH., Proc. Natl. Acad. Sci. U.S.A. 103(26), 2006
PMID: 16785439
Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF.
Yago T, Lou J, Wu T, Yang J, Miner JJ, Coburn L, Lopez JA, Cruz MA, Dong JF, McIntire LV, McEver RP, Zhu C., J. Clin. Invest. 118(9), 2008
PMID: 18725999
Demonstration of catch bonds between an integrin and its ligand.
Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C., J. Cell Biol. 185(7), 2009
PMID: 19564406
Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
Evans E, Leung A, Heinrich V, Zhu C., Proc. Natl. Acad. Sci. U.S.A. 101(31), 2004
PMID: 15277675
The two-pathway model of the biological catch-bond as a limit of the allosteric model.
Pereverzev YV, Prezhdo E, Sokurenko EV., Biophys. J. 101(8), 2011
PMID: 22004757
The two-pathway model for the catch-slip transition in biological adhesion.
Pereverzev YV, Prezhdo OV, Forero M, Sokurenko EV, Thomas WE., Biophys. J. 89(3), 2005
PMID: 15951391
Force modulating dynamic disorder: A physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments
Liu F, Ou-Yang Z-C., 2006
Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.
Barsegov V, Thirumalai D., Proc. Natl. Acad. Sci. U.S.A. 102(6), 2005
PMID: 15701706
Regulation of catch bonds by rate of force application.
Sarangapani KK, Qian J, Chen W, Zarnitsyna VI, Mehta P, Yago T, McEver RP, Zhu C., J. Biol. Chem. 286(37), 2011
PMID: 21775439
Phenomenological and microscopic theories for catch bonds.
Chakrabarti S, Hinczewski M, Thirumalai D., J. Struct. Biol. 197(1), 2016
PMID: 27046010
Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
Harder A, Moller AK, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D., Biophys. J. 108(7), 2015
PMID: 25863062
Catch-bond model derived from allostery explains force-activated bacterial adhesion.
Thomas W, Forero M, Yakovenko O, Nilsson L, Vicini P, Sokurenko E, Vogel V., Biophys. J. 90(3), 2005
PMID: 16272438
Rare events and the convergence of exponentially averaged work values
Jarzynski C., 2006
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lubke T, Anselmetti D, Dierks T., Biochim. Biophys. Acta 1830(11), 2013
PMID: 23891937
HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity.
Seffouh A, Milz F, Przybylski C, Laguri C, Oosterhof A, Bourcier S, Sadir R, Dutkowski E, Daniel R, van Kuppevelt TH, Dierks T, Lortat-Jacob H, Vives RR., FASEB J. 27(6), 2013
PMID: 23457216
Functional consequences of the subdomain organization of the sulfs.
Tang R, Rosen SD., J. Biol. Chem. 284(32), 2009
PMID: 19520866
Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains.
Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellen L., J. Biol. Chem. 283(29), 2008
PMID: 18487608
Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen-Deuterium Exchange Mass Spectrometry.
Tykesson E, Mao Y, Maccarana M, Pu Y, Gao J, Lin C, Zaia J, Westergren-Thorsson G, Ellervik U, Malmstrom L, Malmstrom A., Chem Sci 7(2), 2015
PMID: 26900446
Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy
Hegner M, Wagner P, Semenza G., 1993
Deciphering the scaling of single-molecule interactions using Jarzynski's equality.
Raman S, Utzig T, Baimpos T, Ratna Shrestha B, Valtiner M., Nat Commun 5(), 2014
PMID: 25412574
Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach
Jarzynski C., 1997
Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality.
Liphardt J, Dumont S, Smith SB, Tinoco I Jr, Bustamante C., Science 296(5574), 2002
PMID: 12052949
Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.
Collin D, Ritort F, Jarzynski C, Smith SB, Tinoco I Jr, Bustamante C., Nature 437(7056), 2005
PMID: 16148928
Études de dynamique chimique
van’t MJH., 1884
U¨ber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren
Arrhenius S., 1889
The activated complex in chemical reactions
Eyring H., 1935

Multiprotein signalling complexes: regional assembly on heparan sulphate.
Gallagher JT., Biochem. Soc. Trans. 34(Pt 3), 2006
PMID: 16709181


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 30442949
PubMed | Europe PMC

Suchen in

Google Scholar