Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films
Gaul A, Emmrich D, Ueltzhöffer T, Huckfeldt H, Doganay H, Hackl J, Khan MI, Gottlob DM, Hartmann G, Beyer A, Holzinger D, et al. (2018)
Beilstein Journal of Nanotechnology 9: 2968-2979.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gaul, Alexander;
Emmrich, DanielUniBi;
Ueltzhöffer, Timo;
Huckfeldt, Henning;
Doganay, Hatice;
Hackl, Johanna;
Khan, Muhammad Imtiaz;
Gottlob, Daniel M.;
Hartmann, Gregor;
Beyer, AndréUniBi ;
Holzinger, Dennis;
Nemsak, Slavomir
Alle
Alle
Einrichtung
Abstract / Bemerkung
Background: The application of superparamagnetic particles as biomolecular transporters in microfluidic systems for lab-on-a-chip applications crucially depends on the ability to control their motion. One approach for magnetic-particle motion control is the superposition of static magnetic stray field landscapes (MFLs) with dynamically varying external fields. These MFLs may emerge from magnetic domains engineered both in shape and in their local anisotropies. Motion control of smaller beads does necessarily need smaller magnetic patterns, i.e., MFLs varying on smaller lateral scales. The achievable size limit of engineered magnetic domains depends on the magnetic patterning method and on the magnetic anisotropies of the material system. Smallest patterns are expected to be in the range of the domain wall width of the particular material system. To explore these limits a patterning technology is needed with a spatial resolution significantly smaller than the domain wall width. Results: We demonstrate the application of a helium ion microscope with a beam diameter of 8 nm as a mask-less method for local domain patterning of magnetic thin-film systems. For a prototypical in-plane exchange-bias system the domain wall width has been investigated as a function of the angle between unidirectional anisotropy and domain wall. By shrinking the domain size of periodic domain stripes, we analyzed the influence of domain wall overlap on the domain stability. Finally, by changing the geometry of artificial two-dimensional domains, the influence of domain wall overlap and domain wall geometry on the ultimate domain size in the chosen system was analyzed. Conclusion: The application of a helium ion microscope for magnetic patterning has been shown. It allowed for exploring the fundamental limits of domain engineering in an in-plane exchange-bias thin film as a prototypical system. For two-dimensional domains the limit depends on the domain geometry. The relative orientation between domain wall and anisotropy axes is a crucial parameter and therefore influences the achievable minimum domain size dramatically.
Stichworte
exchange bias;
helium ion microscopy;
ion bombardment induced magnetic;
patterning;
magnetic domains;
magnetic nanostructures
Erscheinungsjahr
2018
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
9
Seite(n)
2968-2979
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2932741
Zitieren
Gaul A, Emmrich D, Ueltzhöffer T, et al. Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology. 2018;9:2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M. I., et al. (2018). Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology, 9, 2968-2979. doi:10.3762/bjnano.9.276
Gaul, Alexander, Emmrich, Daniel, Ueltzhöffer, Timo, Huckfeldt, Henning, Doganay, Hatice, Hackl, Johanna, Khan, Muhammad Imtiaz, et al. 2018. “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”. Beilstein Journal of Nanotechnology 9: 2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M. I., Gottlob, D. M., Hartmann, G., Beyer, A., et al. (2018). Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology 9, 2968-2979.
Gaul, A., et al., 2018. Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology, 9, p 2968-2979.
A. Gaul, et al., “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”, Beilstein Journal of Nanotechnology, vol. 9, 2018, pp. 2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M.I., Gottlob, D.M., Hartmann, G., Beyer, A., Holzinger, D., Nemsak, S., Schneider, C.M., Gölzhäuser, A., Reiss, G., Ehresmann, A.: Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology. 9, 2968-2979 (2018).
Gaul, Alexander, Emmrich, Daniel, Ueltzhöffer, Timo, Huckfeldt, Henning, Doganay, Hatice, Hackl, Johanna, Khan, Muhammad Imtiaz, Gottlob, Daniel M., Hartmann, Gregor, Beyer, André, Holzinger, Dennis, Nemsak, Slavomir, Schneider, Claus M., Gölzhäuser, Armin, Reiss, Günter, and Ehresmann, Arno. “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”. Beilstein Journal of Nanotechnology 9 (2018): 2968-2979.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
55 References
Daten bereitgestellt von Europe PubMed Central.
Nanosecond-Timescale Low Energy Switching of In-Plane Magnetic Tunnel Junctions through Dynamic Oersted-Field-Assisted Spin Hall Effect.
Aradhya SV, Rowlands GE, Oh J, Ralph DC, Buhrman RA., Nano Lett. 16(10), 2016
PMID: 27327619
Aradhya SV, Rowlands GE, Oh J, Ralph DC, Buhrman RA., Nano Lett. 16(10), 2016
PMID: 27327619
Magnetic bubblecade memory based on chiral domain walls.
Moon KW, Kim DH, Yoo SC, Je SG, Chun BS, Kim W, Min BC, Hwang C, Choe SB., Sci Rep 5(), 2015
PMID: 25772606
Moon KW, Kim DH, Yoo SC, Je SG, Chun BS, Kim W, Min BC, Hwang C, Choe SB., Sci Rep 5(), 2015
PMID: 25772606
Fassbender J, Poppe S, Mewes T, Juraszek J, Hillebrands B, Barholz K-U, Mattheis R, Engel D, Jung M, Schmoranzer H., 2003
Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications.
Ehresmann A, Koch I, Holzinger D., Sensors (Basel) 15(11), 2015
PMID: 26580625
Ehresmann A, Koch I, Holzinger D., Sensors (Basel) 15(11), 2015
PMID: 26580625
Höink V, Sacher M, Schmalhorst J, Reiss G, Engel D, Junk D, Ehresmann A., 2005
Zingsem N, Ahrend F, Vock S, Gottlob D, Krug I, Doganay H, Holzinger D, Neu V, Ehresmann A., 2017
Ahrend F, Holzinger D, Fohler M, Pofahl S, Wolff U, DeKieviet M, Schaefer R, Ehresmann A., 2015
Jarosz A, Holzinger D, Urbaniak M, Ehresmann A, Stobiecki F., 2016
Rapoport E, Beach G., 2012
On-chip manipulation of protein-coated magnetic beads via domain-wall conduits.
Donolato M, Vavassori P, Gobbi M, Deryabina M, Hansen MF, Metlushko V, Ilic B, Cantoni M, Petti D, Brivio S, Bertacco R., Adv. Mater. Weinheim 22(24), 2010
PMID: 20586046
Donolato M, Vavassori P, Gobbi M, Deryabina M, Hansen MF, Metlushko V, Ilic B, Cantoni M, Petti D, Brivio S, Bertacco R., Adv. Mater. Weinheim 22(24), 2010
PMID: 20586046
Two-dimensional programmable manipulation of magnetic nanoparticles on-chip.
Sarella A, Torti A, Donolato M, Pancaldi M, Vavassori P., Adv. Mater. Weinheim 26(15), 2014
PMID: 24481833
Sarella A, Torti A, Donolato M, Pancaldi M, Vavassori P., Adv. Mater. Weinheim 26(15), 2014
PMID: 24481833
Burn D, Atkinson D., 2013
Brandl F, Franke K, Lahtinen T, van S, Grundler D., 2014
Albisetti E, Petti D, Madami M, Tacchi S, Vavassori P, Riedo E, Bertacco R., 2017
McGrouther D, Nicholson W, Chapman J, McVitie S., 2005
Potzger K, Bischoff L, Liedke M, Hillebrands B, Rickart M, Freitas P, McCord J, Fassbender J., 2005
Devolder T., 2000
Kaminsky W, Jones G, Patel N, Booij W, Blamire M, Gardiner S, Xu Y, Bland J., 2001
Konings S, Miguel J, Luigjes J, Schlatter H, Luigjes H, Goedkoop J, Gadgil V., 2005
Terris B, Thomson T., 2005
Bernas H, Traverse A., 1982
Berthold I, Müller M, Klötzer S, Ebert R, Thomas S, Matthes P, Albrecht M, Exner H., 2014
Schuppler C, Habenicht A, Guhr I, Maret M, Leiderer P, Boneberg J, Albrecht M., 2006
Bürger D, Zhou S, Pandey M, Viswanadham C, Grenzer J, Roshchupkina O, Anwand W, Reuther H, Gottschalch V, Helm M., 2010
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.
Albisetti E, Petti D, Pancaldi M, Madami M, Tacchi S, Curtis J, King WP, Papp A, Csaba G, Porod W, Vavassori P, Riedo E, Bertacco R., Nat Nanotechnol 11(6), 2016
PMID: 26950242
Albisetti E, Petti D, Pancaldi M, Madami M, Tacchi S, Curtis J, King WP, Papp A, Csaba G, Porod W, Vavassori P, Riedo E, Bertacco R., Nat Nanotechnol 11(6), 2016
PMID: 26950242
Schmidt C, Smolarczyk M, Gomer L, Hillmer H, Ehresmann A., 2014
Devolder T, Chappert C, Chen Y, Cambril E, Bernas H, Jamet J, Ferré J., 1999
Choi S, Joo H, Lee S, Hwang D, Choi J, Lee K, Kim S, Bae S., 2007
Fassbender J, Poppe S, Mewes T, Mougin A, Hillebrands B, Engel D, Jung M, Ehresmann A, Schmoranzer H, Faini G., 2002
Mougin A, Poppe S, Fassbender J, Hillebrands B, Faini G, Ebels U, Jung M, Engel D, Ehresmann A, Schmoranzer H., 2001
Ueltzhöffer T, Schmidt C, Krug I, Nickel F, Gottlob D, Ehresmann A., 2015
McGrouther D, Chapman J, Vanhelmont F., 2004
Hyndman R, Warin P, Gierak J, Ferré J, Chapman J, Jamet J, Mathet V, Chappert C., 2001
Zheng M, Yu M, Liu Y, Skomski R, Liou S, Sellmyer D, Petryakov V, Verevkin Y, Polushkin N, Salashchenko N., 2001
Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment.
Huckfeldt H, Gaul A, David Muglich N, Holzinger D, Nissen D, Albrecht M, Emmrich D, Beyer A, Golzhauser A, Ehresmann A., J Phys Condens Matter 29(12), 2017
PMID: 28106005
Huckfeldt H, Gaul A, David Muglich N, Holzinger D, Nissen D, Albrecht M, Emmrich D, Beyer A, Golzhauser A, Ehresmann A., J Phys Condens Matter 29(12), 2017
PMID: 28106005
Costner E, Lin M, Jen W-L, Willson C., 2009
Pease R, Chou S., 2008
AUTHOR UNKNOWN, 2016
O’Grady K, Fernandez-Outon L, Vallejo-Fernandez G., 2010
Müglich N, Merkel M, Gaul A, Meyl M, Götz G, Reiss G, Kuschel T, Ehresmann A., 2018
Tanase M, Petford-Long A, Heinonen O, Buchanan K, Sort J, Nogués J., 2009
Ziegler J, Ziegler M, Biersack J., 2010
Holzinger D, Zingsem N, Koch I, Gaul A, Fohler M, Schmidt C, Ehresmann A., 2013
Hubert A, Schäfer R., 1998
Donahue M, Porter D., 1999
Reimer L., 1998
Ehresmann A, Schmidt C, Weis T, Engel D., 2011
Absorption of circularly polarized x rays in iron.
Schutz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G., Phys. Rev. Lett. 58(7), 1987
PMID: 10035022
Schutz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G., Phys. Rev. Lett. 58(7), 1987
PMID: 10035022
Stöhr J, Wu Y, Hermsmeier B, Samant M, Harp G, Koranda S, Dunham D, Tonner B., 1993
Berkov D, Boone C, Krivorotov I., 2011
Hartmann U., 2012
Greenwood N, Earnshaw A., 1989
Ehresmann A, Junk D, Engel D, Paetzold A, Röll K., 2005
Hoffmann H., 1964
Mauri D, Kay E, Scholl D, Howard J., 1987
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30591845
PubMed | Europe PMC
Suchen in