Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

Gaul A, Emmrich D, Ueltzhöffer T, Huckfeldt H, Doganay H, Hackl J, Khan MI, Gottlob DM, Hartmann G, Beyer A, Holzinger D, et al. (2018)
Beilstein Journal of Nanotechnology 9: 2968-2979.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gaul, Alexander; Emmrich, DanielUniBi; Ueltzhöffer, Timo; Huckfeldt, Henning; Doganay, Hatice; Hackl, Johanna; Khan, Muhammad Imtiaz; Gottlob, Daniel M.; Hartmann, Gregor; Beyer, AndréUniBi ; Holzinger, Dennis; Nemsak, Slavomir
Alle
Abstract / Bemerkung
Background: The application of superparamagnetic particles as biomolecular transporters in microfluidic systems for lab-on-a-chip applications crucially depends on the ability to control their motion. One approach for magnetic-particle motion control is the superposition of static magnetic stray field landscapes (MFLs) with dynamically varying external fields. These MFLs may emerge from magnetic domains engineered both in shape and in their local anisotropies. Motion control of smaller beads does necessarily need smaller magnetic patterns, i.e., MFLs varying on smaller lateral scales. The achievable size limit of engineered magnetic domains depends on the magnetic patterning method and on the magnetic anisotropies of the material system. Smallest patterns are expected to be in the range of the domain wall width of the particular material system. To explore these limits a patterning technology is needed with a spatial resolution significantly smaller than the domain wall width. Results: We demonstrate the application of a helium ion microscope with a beam diameter of 8 nm as a mask-less method for local domain patterning of magnetic thin-film systems. For a prototypical in-plane exchange-bias system the domain wall width has been investigated as a function of the angle between unidirectional anisotropy and domain wall. By shrinking the domain size of periodic domain stripes, we analyzed the influence of domain wall overlap on the domain stability. Finally, by changing the geometry of artificial two-dimensional domains, the influence of domain wall overlap and domain wall geometry on the ultimate domain size in the chosen system was analyzed. Conclusion: The application of a helium ion microscope for magnetic patterning has been shown. It allowed for exploring the fundamental limits of domain engineering in an in-plane exchange-bias thin film as a prototypical system. For two-dimensional domains the limit depends on the domain geometry. The relative orientation between domain wall and anisotropy axes is a crucial parameter and therefore influences the achievable minimum domain size dramatically.
Stichworte
exchange bias; helium ion microscopy; ion bombardment induced magnetic; patterning; magnetic domains; magnetic nanostructures
Erscheinungsjahr
2018
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
9
Seite(n)
2968-2979
ISSN
2190-4286
Page URI
https://pub.uni-bielefeld.de/record/2932741

Zitieren

Gaul A, Emmrich D, Ueltzhöffer T, et al. Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology. 2018;9:2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M. I., et al. (2018). Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology, 9, 2968-2979. doi:10.3762/bjnano.9.276
Gaul, Alexander, Emmrich, Daniel, Ueltzhöffer, Timo, Huckfeldt, Henning, Doganay, Hatice, Hackl, Johanna, Khan, Muhammad Imtiaz, et al. 2018. “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”. Beilstein Journal of Nanotechnology 9: 2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M. I., Gottlob, D. M., Hartmann, G., Beyer, A., et al. (2018). Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology 9, 2968-2979.
Gaul, A., et al., 2018. Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology, 9, p 2968-2979.
A. Gaul, et al., “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”, Beilstein Journal of Nanotechnology, vol. 9, 2018, pp. 2968-2979.
Gaul, A., Emmrich, D., Ueltzhöffer, T., Huckfeldt, H., Doganay, H., Hackl, J., Khan, M.I., Gottlob, D.M., Hartmann, G., Beyer, A., Holzinger, D., Nemsak, S., Schneider, C.M., Gölzhäuser, A., Reiss, G., Ehresmann, A.: Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films. Beilstein Journal of Nanotechnology. 9, 2968-2979 (2018).
Gaul, Alexander, Emmrich, Daniel, Ueltzhöffer, Timo, Huckfeldt, Henning, Doganay, Hatice, Hackl, Johanna, Khan, Muhammad Imtiaz, Gottlob, Daniel M., Hartmann, Gregor, Beyer, André, Holzinger, Dennis, Nemsak, Slavomir, Schneider, Claus M., Gölzhäuser, Armin, Reiss, Günter, and Ehresmann, Arno. “Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films”. Beilstein Journal of Nanotechnology 9 (2018): 2968-2979.

55 References

Daten bereitgestellt von Europe PubMed Central.

Magnetic bubblecade memory based on chiral domain walls.
Moon KW, Kim DH, Yoo SC, Je SG, Chun BS, Kim W, Min BC, Hwang C, Choe SB., Sci Rep 5(), 2015
PMID: 25772606

Fassbender J, Poppe S, Mewes T, Juraszek J, Hillebrands B, Barholz K-U, Mattheis R, Engel D, Jung M, Schmoranzer H., 2003

Höink V, Sacher M, Schmalhorst J, Reiss G, Engel D, Junk D, Ehresmann A., 2005

Zingsem N, Ahrend F, Vock S, Gottlob D, Krug I, Doganay H, Holzinger D, Neu V, Ehresmann A., 2017

Ahrend F, Holzinger D, Fohler M, Pofahl S, Wolff U, DeKieviet M, Schaefer R, Ehresmann A., 2015

Jarosz A, Holzinger D, Urbaniak M, Ehresmann A, Stobiecki F., 2016

Rapoport E, Beach G., 2012
On-chip manipulation of protein-coated magnetic beads via domain-wall conduits.
Donolato M, Vavassori P, Gobbi M, Deryabina M, Hansen MF, Metlushko V, Ilic B, Cantoni M, Petti D, Brivio S, Bertacco R., Adv. Mater. Weinheim 22(24), 2010
PMID: 20586046
Two-dimensional programmable manipulation of magnetic nanoparticles on-chip.
Sarella A, Torti A, Donolato M, Pancaldi M, Vavassori P., Adv. Mater. Weinheim 26(15), 2014
PMID: 24481833

Burn D, Atkinson D., 2013

Brandl F, Franke K, Lahtinen T, van S, Grundler D., 2014

Albisetti E, Petti D, Madami M, Tacchi S, Vavassori P, Riedo E, Bertacco R., 2017

McGrouther D, Nicholson W, Chapman J, McVitie S., 2005

Potzger K, Bischoff L, Liedke M, Hillebrands B, Rickart M, Freitas P, McCord J, Fassbender J., 2005

Devolder T., 2000

Kaminsky W, Jones G, Patel N, Booij W, Blamire M, Gardiner S, Xu Y, Bland J., 2001

Konings S, Miguel J, Luigjes J, Schlatter H, Luigjes H, Goedkoop J, Gadgil V., 2005

Terris B, Thomson T., 2005

Bernas H, Traverse A., 1982

Berthold I, Müller M, Klötzer S, Ebert R, Thomas S, Matthes P, Albrecht M, Exner H., 2014

Schuppler C, Habenicht A, Guhr I, Maret M, Leiderer P, Boneberg J, Albrecht M., 2006

Bürger D, Zhou S, Pandey M, Viswanadham C, Grenzer J, Roshchupkina O, Anwand W, Reuther H, Gottschalch V, Helm M., 2010
Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography.
Albisetti E, Petti D, Pancaldi M, Madami M, Tacchi S, Curtis J, King WP, Papp A, Csaba G, Porod W, Vavassori P, Riedo E, Bertacco R., Nat Nanotechnol 11(6), 2016
PMID: 26950242

Schmidt C, Smolarczyk M, Gomer L, Hillmer H, Ehresmann A., 2014

Devolder T, Chappert C, Chen Y, Cambril E, Bernas H, Jamet J, Ferré J., 1999

Choi S, Joo H, Lee S, Hwang D, Choi J, Lee K, Kim S, Bae S., 2007

Fassbender J, Poppe S, Mewes T, Mougin A, Hillebrands B, Engel D, Jung M, Ehresmann A, Schmoranzer H, Faini G., 2002

Mougin A, Poppe S, Fassbender J, Hillebrands B, Faini G, Ebels U, Jung M, Engel D, Ehresmann A, Schmoranzer H., 2001

Ueltzhöffer T, Schmidt C, Krug I, Nickel F, Gottlob D, Ehresmann A., 2015

McGrouther D, Chapman J, Vanhelmont F., 2004

Hyndman R, Warin P, Gierak J, Ferré J, Chapman J, Jamet J, Mathet V, Chappert C., 2001

Zheng M, Yu M, Liu Y, Skomski R, Liou S, Sellmyer D, Petryakov V, Verevkin Y, Polushkin N, Salashchenko N., 2001
Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment.
Huckfeldt H, Gaul A, David Muglich N, Holzinger D, Nissen D, Albrecht M, Emmrich D, Beyer A, Golzhauser A, Ehresmann A., J Phys Condens Matter 29(12), 2017
PMID: 28106005

Costner E, Lin M, Jen W-L, Willson C., 2009

Pease R, Chou S., 2008

AUTHOR UNKNOWN, 2016

O’Grady K, Fernandez-Outon L, Vallejo-Fernandez G., 2010

Müglich N, Merkel M, Gaul A, Meyl M, Götz G, Reiss G, Kuschel T, Ehresmann A., 2018

Tanase M, Petford-Long A, Heinonen O, Buchanan K, Sort J, Nogués J., 2009

Ziegler J, Ziegler M, Biersack J., 2010

Holzinger D, Zingsem N, Koch I, Gaul A, Fohler M, Schmidt C, Ehresmann A., 2013

Hubert A, Schäfer R., 1998

Donahue M, Porter D., 1999

Reimer L., 1998

Ehresmann A, Schmidt C, Weis T, Engel D., 2011
Absorption of circularly polarized x rays in iron.
Schutz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G., Phys. Rev. Lett. 58(7), 1987
PMID: 10035022

Stöhr J, Wu Y, Hermsmeier B, Samant M, Harp G, Koranda S, Dunham D, Tonner B., 1993

Berkov D, Boone C, Krivorotov I., 2011

Hartmann U., 2012

Greenwood N, Earnshaw A., 1989

Ehresmann A, Junk D, Engel D, Paetzold A, Röll K., 2005

Hoffmann H., 1964

Mauri D, Kay E, Scholl D, Howard J., 1987
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30591845
PubMed | Europe PMC

Suchen in

Google Scholar