Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles

Betke T, Maier M, Gruber-Wölfler H, Gröger H (2018)
Nature Communications 9(1): 5112.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.14 MB
Autor*in
Betke, TobiasUniBi; Maier, Manuel; Gruber-Wölfler, Heidrun; Gröger, HaraldUniBi
Abstract / Bemerkung
Linear α,ω-dinitriles are important precursors for the polymer industry. Most prominently, adiponitrile is produced on an annual scale of ca. 1 million tons. However, a drawback of today’s dominating process is the need for large amounts of highly toxic hydrogen cyanide. In this contribution, an alternative approach towards such linear dinitriles is presented based on dehydration of readily available α,ω-dialdoximes at ambient conditions by means of aldoxime dehydratases. In contrast to existing production routes this biocatalytic route enables a highly regio- and chemoselective approach towards dinitriles without the use of hydrogen cyanide or harsh reaction conditions. In addition, a selective synthesis of adiponitrile with substrate loadings of up to 100 g/L and high yields of up to 80% was achieved. Furthermore, a lab scale process on liter scale leading to > 99% conversion at 50 g/L underlines the potential and robustness of this method for technical applicability.
Erscheinungsjahr
2018
Zeitschriftentitel
Nature Communications
Band
9
Ausgabe
1
Art.-Nr.
5112
ISSN
2041-1723
eISSN
2041-1723
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2932504

Zitieren

Betke T, Maier M, Gruber-Wölfler H, Gröger H. Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications. 2018;9(1): 5112.
Betke, T., Maier, M., Gruber-Wölfler, H., & Gröger, H. (2018). Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications, 9(1), 5112. doi:10.1038/s41467-018-07434-0
Betke, Tobias, Maier, Manuel, Gruber-Wölfler, Heidrun, and Gröger, Harald. 2018. “Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles”. Nature Communications 9 (1): 5112.
Betke, T., Maier, M., Gruber-Wölfler, H., and Gröger, H. (2018). Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications 9:5112.
Betke, T., et al., 2018. Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications, 9(1): 5112.
T. Betke, et al., “Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles”, Nature Communications, vol. 9, 2018, : 5112.
Betke, T., Maier, M., Gruber-Wölfler, H., Gröger, H.: Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nature Communications. 9, : 5112 (2018).
Betke, Tobias, Maier, Manuel, Gruber-Wölfler, Heidrun, and Gröger, Harald. “Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles”. Nature Communications 9.1 (2018): 5112.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:04Z
MD5 Prüfsumme
e0d9dc09ba32ff1feafa243e3a6c6fb8


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

44 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds.
Chen F, Topf C, Radnik J, Kreyenschulte C, Lund H, Schneider M, Surkus AE, He L, Junge K, Beller M., J. Am. Chem. Soc. 138(28), 2016
PMID: 27320777

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Electrolytic reductive coupling
Baizer MM., 1964

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts.
Jagadeesh RV, Junge H, Beller M., Nat Commun 5(), 2014
PMID: 25005518
Iron Nitrate/TEMPO: a superior homogeneous catalyst for oxidation of primary alcohols to nitriles in air
Dighe SU, Chowdhury D, Batra S., 2014
A new enzymatic method of nitrile synthesis by Rhodococcus sp. strain YH3-3
Kato Y, Ooi R, Asano Y., 1999
Cyanide-free enantioselective synthesis of nitriles: synthetic proof of a biocatalytic concept and mechanistic insights
Metzner R, Okazaki S, Asano Y, Gröger H., 2014
Cyanide-Free and Broadly Applicable Enantioselective Synthetic Platform for Chiral Nitriles through a Biocatalytic Approach.
Betke T, Rommelmann P, Oike K, Asano Y, Groger H., Angew. Chem. Int. Ed. Engl. 56(40), 2017
PMID: 28671741
Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
Miao Y, Metzner R, Asano Y., Chembiochem 18(5), 2017
PMID: 28120515
Enzymatic synthesis of chiral building blocks from prochiral substrates. enantioselective synthesis of monoalkyl malonates
Schneider M, Engel N, Boensmann H., 1984
Synthesis of Adipic Acid, 1,6-Hexanediamine, and 1,6-Hexanediol via Double-n-Selective Hydroformylation of 1,3-Butadiene
Mormul J., 2016
Toward the Rhodium-Catalyzed Bis-Hydroformylation of 1,3-Butadiene to Adipic Aldehyde
Smith SE, Rosendahl T, Hofmann P., 2011

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Oxidation of terminal diols using an oxoammonium salt: a systematic study.
Miller SA, Bobbitt JM, Leadbeater NE., Org. Biomol. Chem. 15(13), 2017
PMID: 28281712
Discovery of a reaction intermediate of aliphatic aldoxime dehydratase involving heme as an active center.
Konishi K, Ohta T, Oinuma K, Hashimoto Y, Kitagawa T, Kobayashi M., Proc. Natl. Acad. Sci. U.S.A. 103(3), 2006
PMID: 16407114
Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis.
Nomura J, Hashimoto H, Ohta T, Hashimoto Y, Wada K, Naruta Y, Oinuma K, Kobayashi M., Proc. Natl. Acad. Sci. U.S.A. 110(8), 2013
PMID: 23382199
X-ray crystal structure of michaelis complex of aldoxime dehydratase.
Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S., J. Biol. Chem. 284(46), 2009
PMID: 19740758
QM/MM study on the catalytic mechanism of heme-containing aliphatic aldoxime dehydratase.
Pan XL, Cui FC, Liu W, Liu JY., J Phys Chem B 116(19), 2012
PMID: 22554192

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Technical photosynthesis involving CO2 electrolysis and fermentation
Haas T, Krause R, Weber R, Demler M, Schmid G., 2018
Production of alpha, omega-alkanediols using Escherichia coli expressing a cytochrome P450 from Acinetobacter sp. OC4.
Fujii T, Narikawa T, Sumisa F, Arisawa A, Takeda K, Kato J., Biosci. Biotechnol. Biochem. 70(6), 2006
PMID: 16794317
Oxidation of terminal diols using an oxoammonium salt: a systematic study.
Miller SA, Bobbitt JM, Leadbeater NE., Org. Biomol. Chem. 15(13), 2017
PMID: 28281712
Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea.
Whittaker M, Bergmann D, Arciero D, Hooper AB., Biochim. Biophys. Acta 1459(2-3), 2000
PMID: 11004450
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30504854
PubMed | Europe PMC

Suchen in

Google Scholar