Stabilization Principles for Polar Surfaces of ZnO

Lauritsen JV, Porsgaard S, Rasmussen MK, Jensen MCR, Bechstein R, Meinander K, Clausen BS, Helveg S, Wahl R, Kresse G, Besenbacher F (2011)
ACS Nano 5(7): 5987-5994.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
ACS Nano
Band
5
Ausgabe
7
Seite(n)
5987-5994
ISSN
eISSN
PUB-ID

Zitieren

Lauritsen JV, Porsgaard S, Rasmussen MK, et al. Stabilization Principles for Polar Surfaces of ZnO. ACS Nano. 2011;5(7):5987-5994.
Lauritsen, J. V., Porsgaard, S., Rasmussen, M. K., Jensen, M. C. R., Bechstein, R., Meinander, K., Clausen, B. S., et al. (2011). Stabilization Principles for Polar Surfaces of ZnO. ACS Nano, 5(7), 5987-5994. doi:10.1021/nn2017606
Lauritsen, J. V., Porsgaard, S., Rasmussen, M. K., Jensen, M. C. R., Bechstein, R., Meinander, K., Clausen, B. S., Helveg, S., Wahl, R., Kresse, G., et al. (2011). Stabilization Principles for Polar Surfaces of ZnO. ACS Nano 5, 5987-5994.
Lauritsen, J.V., et al., 2011. Stabilization Principles for Polar Surfaces of ZnO. ACS Nano, 5(7), p 5987-5994.
J.V. Lauritsen, et al., “Stabilization Principles for Polar Surfaces of ZnO”, ACS Nano, vol. 5, 2011, pp. 5987-5994.
Lauritsen, J.V., Porsgaard, S., Rasmussen, M.K., Jensen, M.C.R., Bechstein, R., Meinander, K., Clausen, B.S., Helveg, S., Wahl, R., Kresse, G., Besenbacher, F.: Stabilization Principles for Polar Surfaces of ZnO. ACS Nano. 5, 5987-5994 (2011).
Lauritsen, Jeppe V., Porsgaard, Soeren, Rasmussen, Morten K., Jensen, Mona C. R., Bechstein, Ralf, Meinander, Kristoffer, Clausen, Bjerne S., Helveg, Stig, Wahl, Roman, Kresse, Georg, and Besenbacher, Flemming. “Stabilization Principles for Polar Surfaces of ZnO”. ACS Nano 5.7 (2011): 5987-5994.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Entropic contributions enhance polarity compensation for CeO2(100) surfaces.
Capdevila-Cortada M, López N., Nat Mater 16(3), 2017
PMID: 27869825
Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.
Hong HK, Jo J, Hwang D, Lee J, Kim NY, Son S, Kim JH, Jin MJ, Jun YC, Erni R, Kwak SK, Yoo JW, Lee Z., Nano Lett 17(1), 2017
PMID: 28002942
Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces.
Borghetti P, Mouchaal Y, Dai Z, Cabailh G, Chenot S, Lazzari R, Jupille J., Phys Chem Chem Phys 19(16), 2017
PMID: 28379222
Using ZnO-Cr2O3-ZnO heterostructures to characterize polarization penetration depth through non-polar films.
Zhu X, Jhang JH, Zhou C, Dagdeviren OE, Chen Z, Schwarz UD, Altman EI., Phys Chem Chem Phys 19(48), 2017
PMID: 29188828
Mechanism and energetics of O and O2 adsorption on polar and non-polar ZnO surfaces.
Gorai P, Seebauer EG, Ertekin E., J Chem Phys 144(18), 2016
PMID: 27179501
Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies.
Beinik I, Hellström M, Jensen TN, Broqvist P, Lauritsen JV., Nat Commun 6(), 2015
PMID: 26567989
Activity of ZnO polar surfaces: an insight from surface energies.
Tang C, Spencer MJ, Barnard AS., Phys Chem Chem Phys 16(40), 2014
PMID: 25212731
Piezoelectric effects and electromechanical theories at the nanoscale.
Zhang J, Wang C, Bowen C., Nanoscale 6(22), 2014
PMID: 25315991
Autocatalytic growth of ZnO nanorods from flat Au(111)-supported ZnO films.
Pascua L, Stavale F, Nilius N, Freund HJ., Phys Chem Chem Phys 16(48), 2014
PMID: 25370942
Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.
Federici Canova F, Foster AS, Rasmussen MK, Meinander K, Besenbacher F, Lauritsen JV., Nanotechnology 23(32), 2012
PMID: 22827936

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21671628
PubMed | Europe PMC

Suchen in

Google Scholar