Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain

Thakur CS, Molin JL, Cauwenberghs G, Indiveri G, Kumar K, Qiao N, Schemmel J, Wang R, Chicca E, Olson Hasler J, Seo J-sun, et al. (2018)
Frontiers in Neuroscience 12: 891.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Restricted Thakur_etal18.pdf 8.68 MB
Thakur, Chetan Singh; Molin, Jamal Lottier; Cauwenberghs, Gert; Indiveri, Giacomo; Kumar, Kundan; Qiao, Ning; Schemmel, Johannes; Wang, Runchun; Chicca, ElisabettaUniBi ; Olson Hasler, Jennifer; Seo, Jae-sun; Yu, Shimeng
Frontiers in Neuroscience
Page URI


Thakur CS, Molin JL, Cauwenberghs G, et al. Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Frontiers in Neuroscience. 2018;12: 891.
Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., Schemmel, J., et al. (2018). Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Frontiers in Neuroscience, 12, 891. doi:10.3389/fnins.2018.00891
Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., Schemmel, J., Wang, R., Chicca, E., Olson Hasler, J., et al. (2018). Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Frontiers in Neuroscience 12:891.
Thakur, C.S., et al., 2018. Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Frontiers in Neuroscience, 12: 891.
C.S. Thakur, et al., “Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain”, Frontiers in Neuroscience, vol. 12, 2018, : 891.
Thakur, C.S., Molin, J.L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., Schemmel, J., Wang, R., Chicca, E., Olson Hasler, J., Seo, J.-sun, Yu, S., Cao, Y., van Schaik, A., Etienne-Cummings, R.: Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain. Frontiers in Neuroscience. 12, : 891 (2018).
Thakur, Chetan Singh, Molin, Jamal Lottier, Cauwenberghs, Gert, Indiveri, Giacomo, Kumar, Kundan, Qiao, Ning, Schemmel, Johannes, Wang, Runchun, Chicca, Elisabetta, Olson Hasler, Jennifer, Seo, Jae-sun, Yu, Shimeng, Cao, Yu, van Schaik, André, and Etienne-Cummings, Ralph. “Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain”. Frontiers in Neuroscience 12 (2018): 891.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Thakur_etal18.pdf 8.68 MB
Access Level
Restricted Closed Access
Zuletzt Hochgeladen
MD5 Prüfsumme

55 References

Daten bereitgestellt von Europe PubMed Central.

Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.
Park J, Yu T, Joshi S, Maier C, Cauwenberghs G., IEEE Trans Neural Netw Learn Syst 28(10), 2016
PMID: 27483491
Stochastic inference with spiking neurons in the high-conductance state.
Petrovici MA, Bill J, Bytschok I, Schemmel J, Meier K., Phys Rev E 94(4-1), 2016
PMID: 27841474
Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB., Nature 521(7550), 2015
PMID: 25951284
Neurogrid: emulating a million neurons in the cortex.
Boahen K., Conf Proc IEEE Eng Med Biol Soc Suppl(), 2006
PMID: 17959490
A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G., Front Neurosci 9(), 2015
PMID: 25972778
Floating gate synapses with spike-time-dependent plasticity.
Ramakrishnan S, Hasler PE, Gordon C., IEEE Trans Biomed Circuits Syst 5(3), 2011
PMID: 23851475
NeuroPipe-Chip: A digital neuro-processor for spiking neural networks.
Schoenauer T, Atasoy S, Mehrtash N, Klar H., IEEE Trans Neural Netw 13(1), 2002
PMID: 18244419
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
Brader JM, Senn W, Fusi S., Neural Comput 19(11), 2007
PMID: 17883345
CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.
Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas-Perez M, Delbruck T, Liu SC, Douglas R, Hafliger P, Jimenez-Moreno G, Civit Ballcels A, Serrano-Gotarredona T, Acosta-Jimenez AJ, Linares-Barranco B., IEEE Trans Neural Netw 20(9), 2009
PMID: 19635693
Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System.
Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E., Front Neurosci 6(), 2012
PMID: 22347163
Interlaminar connections in the neocortex.
Thomson AM, Bannister AP., Cereb. Cortex 13(1), 2003
PMID: 12466210
A multichip neuromorphic system for spike-based visual information processing.
Vogelstein RJ, Mallik U, Culurciello E, Cauwenberghs G, Etienne-Cummings R., Neural Comput 19(9), 2007
PMID: 17650061
A learning-enabled neuron array IC based upon transistor channel models of biological phenomena.
Brink S, Nease S, Hasler P, Ramakrishnan S, Wunderlich R, Basu A, Degnan B., IEEE Trans Biomed Circuits Syst 7(1), 2013
PMID: 23853281
Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G., IEEE Trans Neural Netw 18(1), 2007
PMID: 17278476
Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.
Wang R, Thakur CS, Cohen G, Hamilton TJ, Tapson J, van Schaik A., IEEE Trans Biomed Circuits Syst 11(3), 2017
PMID: 28436888
Breaking Liebig's Law: An Advanced Multipurpose Neuromorphic Engine.
Wang R, van Schaik A., Front Neurosci 12(), 2018
PMID: 30210278
An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
Wang RM, Thakur CS, van Schaik A., Front Neurosci 12(), 2018
PMID: 29692702
A neuromime in VLSI.
Wolpert S, Micheli-Tzanakou E., IEEE Trans Neural Netw 7(2), 1996
PMID: 18255584
Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
Broccard FD, Joshi S, Wang J, Cauwenberghs G., J Neural Eng 14(4), 2017
PMID: 28573983
Multicasting mesh AER: a scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets.
Zamarreno-Ramos C, Linares-Barranco A, Serrano-Gotarredona T, Linares-Barranco B., IEEE Trans Biomed Circuits Syst 7(1), 2013
PMID: 23853282
The minicolumn hypothesis in neuroscience.
Buxhoeveden DP, Casanova MF., Brain 125(Pt 5), 2002
PMID: 11960884
The minicolumn and evolution of the brain.
Buxhoeveden DP, Casanova MF., Brain Behav. Evol. 60(3), 2002
PMID: 12417819
PyNN: A Common Interface for Neuronal Network Simulators.
Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P., Front Neuroinform 2(), 2008
PMID: 19194529
A large-scale model of the functioning brain.
Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Tang C, Rasmussen D., Science 338(6111), 2012
PMID: 23197532
Modeling latency code processing in the electric sense: from the biological template to its VLSI implementation.
Engelmann J, Walther T, Grant K, Chicca E, Gomez-Sena L., Bioinspir Biomim 11(5), 2016
PMID: 27623047
Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.
Friedmann S, Schemmel J, Grubl A, Hartel A, Hock M, Meier K., IEEE Trans Biomed Circuits Syst 11(1), 2016
PMID: 28113678
Large-scale neuromorphic computing systems.
Furber S., J Neural Eng 13(5), 2016
PMID: 27529195
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning.
Gao L, Wang IT, Chen PY, Vrudhula S, Seo JS, Cao Y, Hou TH, Yu S., Nanotechnology 26(45), 2015
PMID: 26491032
Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons.
Goldberg DH, Cauwenberghs G, Andreou AG., Neural Netw 14(6-7), 2001
PMID: 11665770
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS., Nature 405(6789), 2000
PMID: 10879535
Finding a roadmap to achieve large neuromorphic hardware systems.
Hasler J, Marr B., Front Neurosci 7(), 2013
PMID: 24058330
Ferrier lecture. Functional architecture of macaque monkey visual cortex.
Hubel DH, Wiesel TN., Proc. R. Soc. Lond., B, Biol. Sci. 198(1130), 1977
PMID: 20635
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
Indiveri G, Chicca E, Douglas R., IEEE Trans Neural Netw 17(1), 2006
PMID: 16526488
Neuromorphic silicon neuron circuits.
Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Hafliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K., Front Neurosci 5(), 2011
PMID: 21747754
Large-scale model of mammalian thalamocortical systems.
Izhikevich EM, Edelman GM., Proc. Natl. Acad. Sci. U.S.A. 105(9), 2008
PMID: 18292226
Synaptic dynamics in analog VLSI.
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003
Nanoscale memristor device as synapse in neuromorphic systems.
Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W., Nano Lett. 10(4), 2010
PMID: 20192230
Towards cortex sized artificial neural systems.
Johansson C, Lansner A., Neural Netw 20(1), 2006
PMID: 16860539
A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.
Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W., Nano Lett. 12(1), 2011
PMID: 22141918
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum D, Jeyasingh RG, Lee B, Wong HS., Nano Lett. 12(5), 2011
PMID: 21668029
A silicon neuron.
Mahowald M, Douglas R., Nature 354(6354), 1991
PMID: 1661852
The blue brain project.
Markram H., Nat. Rev. Neurosci. 7(2), 2006
PMID: 16429124
Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface.
Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J, Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD, Risk WP, Manohar R, Modha DS., Science 345(6197), 2014
PMID: 25104385
A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).
Moradi S, Qiao N, Stefanini F, Indiveri G., IEEE Trans Biomed Circuits Syst 12(1), 2018
PMID: 29377800
Firing patterns in the adaptive exponential integrate-and-fire model.
Naud R, Marcille N, Clopath C, Gerstner W., Biol Cybern 99(4-5), 2008
PMID: 19011922
Modeling and implementation of voltage-mode CMOS dendrites on a reconfigurable analog platform.
Nease S, George S, Hasler P, Koziol S, Brink S., IEEE Trans Biomed Circuits Syst 6(1), 2012
PMID: 23852747
Synthesizing cognition in neuromorphic electronic systems.
Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ., Proc. Natl. Acad. Sci. U.S.A. 110(37), 2013
PMID: 23878215
Event-driven contrastive divergence for spiking neuromorphic systems.
Neftci E, Das S, Pedroni B, Kreutz-Delgado K, Cauwenberghs G., Front Neurosci 7(), 2013
PMID: 24574952
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.
Neftci EO, Pedroni BU, Joshi S, Al-Shedivat M, Cauwenberghs G., Front Neurosci 10(), 2016
PMID: 27445650
An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks.
Pani D, Meloni P, Tuveri G, Palumbo F, Massobrio P, Raffo L., Front Neurosci 11(), 2017
PMID: 28293163


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 30559644
PubMed | Europe PMC

Suchen in

Google Scholar