Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods
Teich L, Schröder C, Müller C, Patel A, Meyer J, Hütten A (2015)
Acta Physica Polonica A 127(2): 374-376.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
67 Teich Efficient Calculation of low energy configurations of nanoparticle ensembles.pdf
1.39 MB
Request a Copy
Autor*in
Teich, Lisa;
Schröder, ChristianUniBi ;
Müller, C.;
Patel, AnantUniBi ;
Meyer, JudithUniBi;
Hütten, AndreasUniBi
Einrichtung
Abstract / Bemerkung
We present results of Monte Carlo and stochastic spin dynamics simulations of a magnetic nanoparticle model system based on experimentally produced samples. Thermodynamic investigations as well as spin dynamics studies show characteristic features, both resembling magnetic dipole glass behaviour. While spin dynamics studies at T = 0 yield a multitude of low energy configurations, thermodynamic simulations show a clear transition between a paramagnetic and a frozen magnetic state. Moreover, we demonstrate the application of experimentally inspired demagnetization protocols to compute low energy configurations of the systems under consideration efficiently.
Erscheinungsjahr
2015
Zeitschriftentitel
Acta Physica Polonica A
Band
127
Ausgabe
2
Seite(n)
374-376
ISSN
0587-4246
eISSN
1898-794X
Page URI
https://pub.uni-bielefeld.de/record/2931941
Zitieren
Teich L, Schröder C, Müller C, Patel A, Meyer J, Hütten A. Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods. Acta Physica Polonica A. 2015;127(2):374-376.
Teich, L., Schröder, C., Müller, C., Patel, A., Meyer, J., & Hütten, A. (2015). Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods. Acta Physica Polonica A, 127(2), 374-376. doi:10.12693/aphyspola.127.374
Teich, Lisa, Schröder, Christian, Müller, C., Patel, Anant, Meyer, Judith, and Hütten, Andreas. 2015. “Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods”. Acta Physica Polonica A 127 (2): 374-376.
Teich, L., Schröder, C., Müller, C., Patel, A., Meyer, J., and Hütten, A. (2015). Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods. Acta Physica Polonica A 127, 374-376.
Teich, L., et al., 2015. Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods. Acta Physica Polonica A, 127(2), p 374-376.
L. Teich, et al., “Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods”, Acta Physica Polonica A, vol. 127, 2015, pp. 374-376.
Teich, L., Schröder, C., Müller, C., Patel, A., Meyer, J., Hütten, A.: Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods. Acta Physica Polonica A. 127, 374-376 (2015).
Teich, Lisa, Schröder, Christian, Müller, C., Patel, Anant, Meyer, Judith, and Hütten, Andreas. “Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamicsand Monte Carlo Methods”. Acta Physica Polonica A 127.2 (2015): 374-376.
Volltext(e)
Name
67 Teich Efficient Calculation of low energy configurations of nanoparticle ensembles.pdf
1.39 MB
Request a Copy
Access Level
Request a Copy
Zuletzt Hochgeladen
2019-09-06T07:37:03Z
MD5 Prüfsumme
012c5d49a285a67e5008dafd7a4e8c76
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in