Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida

Mindt M, Walter T, Risse JM, Wendisch VF (2018)
Frontiers in Bioengineering and Biotechnology 6: 159.

Download
OA 2.36 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
N-methylated amino acids are present in diverse biological molecules in bacteria, archaea and eukaryotes. There is an increasing interest in this molecular class of alkylated amino acids by the pharmaceutical and chemical industries. N-alkylated amino acids have desired functions such as higher proteolytic stability, enhanced membrane permeability and longer peptide half-lives, which are important for the peptide-based drugs, the so-called peptidomimetics. Chemical synthesis of N-methylated amino acids often is limited by incomplete stereoselectivity, over-alkylation or the use of hazardous chemicals. Here, we describe metabolic engineering of Pseudomonas putida KT2440 for the fermentative production of N-methylglutamate from simple carbon sources and monomethylamine. P. putida KT2440, which is generally recognized as safe and grows with glucose and the alternative feedstock glycerol as sole carbon and energy source, was engineered for the production of N-methylglutamate using heterologous enzymes from Methylobacterium extorquens. About 3.9 g L−1 N-methylglutamate accumulated within 48 h in shake flask cultures with minimal medium containing monomethylamine and glycerol. A fed-batch cultivation process yielded a N-methylglutamate titer of 17.9 g L−1.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Bioengineering and Biotechnology
Band
6
Art.-Nr.
159
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Mindt M, Walter T, Risse JM, Wendisch VF. Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology. 2018;6: 159.
Mindt, M., Walter, T., Risse, J. M., & Wendisch, V. F. (2018). Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 6, 159. doi:10.3389/fbioe.2018.00159
Mindt, M., Walter, T., Risse, J. M., and Wendisch, V. F. (2018). Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology 6:159.
Mindt, M., et al., 2018. Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 6: 159.
M. Mindt, et al., “Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida”, Frontiers in Bioengineering and Biotechnology, vol. 6, 2018, : 159.
Mindt, M., Walter, T., Risse, J.M., Wendisch, V.F.: Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology. 6, : 159 (2018).
Mindt, Melanie, Walter, Tatjana, Risse, Joe Max, and Wendisch, Volker F. “Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida”. Frontiers in Bioengineering and Biotechnology 6 (2018): 159.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-01-22T12:11:02Z

68 References

Daten bereitgestellt von Europe PubMed Central.

Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum.
Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T., Appl. Environ. Microbiol. 73(4), 2006
PMID: 17158630
Bacterial reduction of trimethylamine oxide.
Barrett EL, Kwan HS., Annu. Rev. Microbiol. 39(), 1985
PMID: 3904597
Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria.
Bhadbhade BJ, Sarnaik SS, Kanekar PP., J. Appl. Microbiol. 93(2), 2002
PMID: 12147070
Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase.
Bormann ER, Eikmanns BJ, Sahm H., Mol. Microbiol. 6(3), 1992
PMID: 1552846
{gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris.
Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schafer H, Murrell JC., Appl. Environ. Microbiol. 76(13), 2010
PMID: 20472738
N-Methylated α-Amino Acids And Peptides: Synthesis And Biological Activity.
Di Gioia ML, Leggio A, Malagrino F, Romio E, Siciliano C, Liguori A., Mini Rev Med Chem 16(9), 2016
PMID: 27001259
Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase.
Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H., Microbiology (Reading, Engl.) 140 ( Pt 8)(), 1994
PMID: 7522844
The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
Escapa IF, del Cerro C, Garcia JL, Prieto MA., Environ. Microbiol. 15(1), 2012
PMID: 22646161
Synthesis of 9-fluorenylmethyloxycarbonyl-protected N-alkyl amino acids by reduction of oxazolidinones
Freidinger R., Hinkle J., Perlow D.., 1983
Specialized bacterial strains for the removal of dichloromethane from industrial waste
Gälli R., Leisinger T.., 1985
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Development of a method for markerless gene deletion in Pseudomonas putida.
Graf N, Altenbuchner J., Appl. Environ. Microbiol. 77(15), 2011
PMID: 21666018

Green M., Sambrook J.., 2012
Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine.
Gruffaz C, Muller EE, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F., Appl. Environ. Microbiol. 80(11), 2014
PMID: 24682302
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Transformation of Pseudomonas putida by electroporation.
Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y., Biosci. Biotechnol. Biochem. 58(5), 1994
PMID: 7764975
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum.
Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S., Biosci. Biotechnol. Biochem. 61(7), 1997
PMID: 9255973
Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5.
Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M, Schafer H, Kalyuzhnaya MG., Mol. Microbiol. 75(2), 2009
PMID: 19943898
N-methylsansalvamide a peptide analogues. Potent new antitumor agents.
Liu S, Gu W, Lo D, Ding XZ, Ujiki M, Adrian TE, Soff GA, Silverman RB., J. Med. Chem. 48(10), 2005
PMID: 15887970
Pseudomonas putida-a versatile host for the production of natural products.
Loeschcke A, Thies S., Appl. Microbiol. Biotechnol. 99(15), 2015
PMID: 26099332
Glutamate synthase. Properties of the glutamine-dependent activity.
Mantsala P, Zalkin H., J. Biol. Chem. 251(11), 1976
PMID: 6449
Properties of apoglutamate synthase and comparison with glutamate dehydrogenase.
Mantsala P, Zalkin H., J. Biol. Chem. 251(11), 1976
PMID: 6450
Glutamate synthase from Bacillus subtilis PCI 219.
Matsuoka K, Kimura K., J. Biochem. 99(4), 1986
PMID: 3011766
Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.
Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF., Bioresour. Technol. 145(), 2013
PMID: 23562176
Nitrogen control in bacteria.
Merrick MJ, Edwards RA., Microbiol. Rev. 59(4), 1995
PMID: 8531888
Posttranslational Modifications of Ribosomal Proteins in Escherichia coli.
Nesterchuk MV, Sergiev PV, Dontsova OA., Acta Naturae 3(2), 2011
PMID: 22649682
Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440.
Nikel PI, Kim J, de Lorenzo V., Environ. Microbiol. 16(1), 2013
PMID: 23967821
Biotechnological domestication of pseudomonads using synthetic biology.
Nikel PI, Martinez-Garcia E, de Lorenzo V., Nat. Rev. Microbiol. 12(5), 2014
PMID: 24736795
The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor.
Nikel PI, Romero-Campero FJ, Zeidman JA, Goni-Moreno A, de Lorenzo V., MBio 6(2), 2015
PMID: 25827416
Expedient synthesis of N-methyl tubulysin analogues with high cytotoxicity.
Patterson AW, Peltier HM, Ellman JA., J. Org. Chem. 73(12), 2008
PMID: 18479168
N-methylglutamate synthetase. Purification and properties of the enzyme.
Pollock RJ, Hersh LB., J. Biol. Chem. 246(15), 1971
PMID: 5562354
The enzymatic synthesis of N-methylglutamic acid.
Shaw WV, Tsai L, Stadtman ER., J. Biol. Chem. 241(4), 1966
PMID: 5905132
Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates).
Solaiman DK, Ashby RD, Foglia TA, Marmer WN., Appl. Microbiol. Biotechnol. 71(6), 2006
PMID: 16708192
N-terminal methylation of proteins: structure, function and specificity.
Stock A, Clarke S, Clarke C, Stock J., FEBS Lett. 220(1), 1987
PMID: 3301412
Expression of benzene dioxygenase from Pseudomonas putida ML2 in cis-1,2-cyclohexanediol-degrading pseudomonads.
Swift RJ, Carter SF, Widdowson DA, Mason JR, Leak DJ., Appl. Microbiol. Biotechnol. 55(6), 2001
PMID: 11525620
Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant
Tesch M., Eikmanns B., de A., Sahm H.., 1998
Methylamine oxidase from Arthrobacter P1. A bacterial copper-quinoprotein amine oxidase.
van Iersel J, van der Meer RA, Duine JA., Eur. J. Biochem. 161(2), 1986
PMID: 3780750
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.
Verhoef S, Ruijssenaars HJ, de Bont JA, Wery J., J. Biotechnol. 132(1), 2007
PMID: 17900735
Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources.
Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, Vorholt JA, Olson MV, Kaul R, Weissenbach J, Medigue C, Lidstrom ME., PLoS ONE 4(5), 2009
PMID: 19440302
Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose.
Wang Q, Yang P, Xian M, Feng L, Wang J, Zhao G., Biotechnol. Lett. 36(11), 2014
PMID: 25048226
A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source.
Wang Y, Zhang Y, Jiang T, Meng J, Sheng B, Yang C, Gao C, Xu P, Ma C., Biotechnol Biofuels 8(), 2015
PMID: 26609321

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30474025
PubMed | Europe PMC

Suchen in

Google Scholar