Dirichlet form associated with the $\phi_{3}^{4}$ model

Zhu R, Zhu X (2018)
Electronic Journal of Probability 23: 78.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We construct the Dirichlet form associated with the dynamical Phi(4)(3) model obtained in [23, 7] and [37]. This Dirichlet form on cylinder functions is identified as a classical gradient bilinear form. As a consequence, this classical gradient bilinear form is closable and then by a well-known result its closure is also a quasi-regular Dirichlet form, which means that there exists another (Markov) diffusion process, which also admits the Phi(4)(3) field measure as an invariant (even symmetrizing) measure.
Erscheinungsjahr
Zeitschriftentitel
Electronic Journal of Probability
Band
23
Art.-Nr.
78
ISSN
PUB-ID

Zitieren

Zhu R, Zhu X. Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability. 2018;23: 78.
Zhu, R., & Zhu, X. (2018). Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability, 23, 78. doi:10.1214/18-EJP207
Zhu, R., and Zhu, X. (2018). Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability 23:78.
Zhu, R., & Zhu, X., 2018. Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability, 23: 78.
R. Zhu and X. Zhu, “Dirichlet form associated with the $\phi_{3}^{4}$ model”, Electronic Journal of Probability, vol. 23, 2018, : 78.
Zhu, R., Zhu, X.: Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability. 23, : 78 (2018).
Zhu, Rongchan, and Zhu, Xiangchan. “Dirichlet form associated with the $\phi_{3}^{4}$ model”. Electronic Journal of Probability 23 (2018): 78.