Dirichlet form associated with the $\phi_{3}^{4}$ model

Zhu R, Zhu X (2018)
Electronic Journal of Probability 23: 78.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We construct the Dirichlet form associated with the dynamical Phi(4)(3) model obtained in [23, 7] and [37]. This Dirichlet form on cylinder functions is identified as a classical gradient bilinear form. As a consequence, this classical gradient bilinear form is closable and then by a well-known result its closure is also a quasi-regular Dirichlet form, which means that there exists another (Markov) diffusion process, which also admits the Phi(4)(3) field measure as an invariant (even symmetrizing) measure.
Stichworte
Phi(4 )(3)model; Dirichlet form; paracontrolled distributions; regularity structures; space-time white noise; renormalisation
Erscheinungsjahr
2018
Zeitschriftentitel
Electronic Journal of Probability
Band
23
Art.-Nr.
78
ISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2931539

Zitieren

Zhu R, Zhu X. Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability. 2018;23: 78.
Zhu, R., & Zhu, X. (2018). Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability, 23, 78. doi:10.1214/18-EJP207
Zhu, R., and Zhu, X. (2018). Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability 23:78.
Zhu, R., & Zhu, X., 2018. Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability, 23: 78.
R. Zhu and X. Zhu, “Dirichlet form associated with the $\phi_{3}^{4}$ model”, Electronic Journal of Probability, vol. 23, 2018, : 78.
Zhu, R., Zhu, X.: Dirichlet form associated with the $\phi_{3}^{4}$ model. Electronic Journal of Probability. 23, : 78 (2018).
Zhu, Rongchan, and Zhu, Xiangchan. “Dirichlet form associated with the $\phi_{3}^{4}$ model”. Electronic Journal of Probability 23 (2018): 78.