Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia

Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer H, Boetius A, Wegener G (2018)
ENVIRONMENTAL MICROBIOLOGY 20(5): 1651-1666.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Krukenberg, Viola; Riedel, Dietmar; Gruber-Vodicka, Harald R.; Buttigieg, Pier Luigi; Tegetmeyer, HalinaUniBi ; Boetius, Antje; Wegener, Gunter
Abstract / Bemerkung
The sulfate-dependent, anaerobic oxidation of methane (AOM) is an important sink for methane in marine environments. It is carried out between anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) living in syntrophic partnership. In this study, we compared the genomes, gene expression patterns and ultrastructures of three phylogenetically different microbial consortia found in hydrocarbon-rich environments under different temperature regimes: ANME-1a/HotSeep-1 (60 degrees C), ANME-1a/Seep-SRB2 (37 degrees C) and ANME-2c/Seep-SRB2 (20 degrees C). All three ANME encode a reverse methanogenesis pathway: ANME-2c encodes all enzymes, while ANME-1a lacks the gene for N5,N10-methylene tetrahydromethanopterin reductase (mer) and encodes a methylenetetrahydrofolate reductase (Met). The bacterial partners contain the genes encoding the canonical dissimilatory sulfate reduction pathway. During AOM, all three consortia types highly expressed genes encoding for the formation of flagella or type IV piii and/or c-type cytochromes, some predicted to be extracellular. ANME-2c expressed potentially extracellular cytochromes with up to 32 hemes, whereas ANME-1a and SRB expressed less complex cytochromes (<= 8 and <= 12 heme respectively). The intercellular space of all consortia showed nanowire-like structures and heme-rich areas. These features are proposed to enable interspecies electron exchange, hence suggesting that direct electron transfer is a common mechanism to sulfate-dependent AOM, and that both partners synthesize molecules to enable it.
Erscheinungsjahr
2018
Zeitschriftentitel
ENVIRONMENTAL MICROBIOLOGY
Band
20
Ausgabe
5
Seite(n)
1651-1666
ISSN
1462-2912
eISSN
1462-2920
Page URI
https://pub.uni-bielefeld.de/record/2931532

Zitieren

Krukenberg V, Riedel D, Gruber-Vodicka HR, et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. ENVIRONMENTAL MICROBIOLOGY. 2018;20(5):1651-1666.
Krukenberg, V., Riedel, D., Gruber-Vodicka, H. R., Buttigieg, P. L., Tegetmeyer, H., Boetius, A., & Wegener, G. (2018). Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. ENVIRONMENTAL MICROBIOLOGY, 20(5), 1651-1666. doi:10.1111/1462-2920.14077
Krukenberg, Viola, Riedel, Dietmar, Gruber-Vodicka, Harald R., Buttigieg, Pier Luigi, Tegetmeyer, Halina, Boetius, Antje, and Wegener, Gunter. 2018. “Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia”. ENVIRONMENTAL MICROBIOLOGY 20 (5): 1651-1666.
Krukenberg, V., Riedel, D., Gruber-Vodicka, H. R., Buttigieg, P. L., Tegetmeyer, H., Boetius, A., and Wegener, G. (2018). Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. ENVIRONMENTAL MICROBIOLOGY 20, 1651-1666.
Krukenberg, V., et al., 2018. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. ENVIRONMENTAL MICROBIOLOGY, 20(5), p 1651-1666.
V. Krukenberg, et al., “Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia”, ENVIRONMENTAL MICROBIOLOGY, vol. 20, 2018, pp. 1651-1666.
Krukenberg, V., Riedel, D., Gruber-Vodicka, H.R., Buttigieg, P.L., Tegetmeyer, H., Boetius, A., Wegener, G.: Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. ENVIRONMENTAL MICROBIOLOGY. 20, 1651-1666 (2018).
Krukenberg, Viola, Riedel, Dietmar, Gruber-Vodicka, Harald R., Buttigieg, Pier Luigi, Tegetmeyer, Halina, Boetius, Antje, and Wegener, Gunter. “Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia”. ENVIRONMENTAL MICROBIOLOGY 20.5 (2018): 1651-1666.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Contrasting Pathways for Anaerobic Methane Oxidation in Gulf of Mexico Cold Seep Sediments.
Vigneron A, Alsop EB, Cruaud P, Philibert G, King B, Baksmaty L, Lavallee D, Lomans BP, Eloe-Fadrosh E, Kyrpides NC, Head IM, Tsesmetzis N., mSystems 4(1), 2019
PMID: 30834326
The Archaellum of Methanospirillum hungatei Is Electrically Conductive.
Walker DJF, Martz E, Holmes DE, Zhou Z, Nonnenmann SS, Lovley DR., MBio 10(2), 2019
PMID: 30992355
Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms.
Ueki T, Nevin KP, Rotaru AE, Wang LY, Ward JE, Woodard TL, Lovley DR., MBio 9(4), 2018
PMID: 29991583

78 References

Daten bereitgestellt von Europe PubMed Central.

Conductivity of individual Geobacter pili
Adhikari, RSC Adv 6(), 2015
The archaellum: how Archaea swim.
Albers SV, Jarrell KF., Front Microbiol 6(), 2015
PMID: 25699024
SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA., J. Comput. Biol. 19(5), 2012
PMID: 22506599
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
Bertsch J, Oppinger C, Hess V, Langer JD, Muller V., J. Bacteriol. 197(9), 2015
PMID: 25733614
Seafloor oxygen consumption fuelled by methane from cold seeps
Boetius, Nat Geosci 6(), 2013
A marine microbial consortium apparently mediating anaerobic oxidation of methane.
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O., Nature 407(6804), 2000
PMID: 11034209
Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
Dekas AE, Poretsky RS, Orphan VJ., Science 326(5951), 2009
PMID: 19833965
Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses.
Dekas AE, Connon SA, Chadwick GL, Trembath-Reichert E, Orphan VJ., ISME J 10(3), 2015
PMID: 26394007
Improved identification of methanogenic bacteria by fluorescence microscopy.
Doddema HJ, Vogels GD., Appl. Environ. Microbiol. 36(5), 1978
PMID: 103504
Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.
Dowell F, Cardman Z, Dasarathy S, Kellermann MY, Lipp JS, Ruff SE, Biddle JF, McKay LJ, MacGregor BJ, Lloyd KG, Albert DB, Mendlovitz H, Hinrichs KU, Teske A., Front Microbiol 7(), 2016
PMID: 26858698
Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.
Grein F, Ramos AR, Venceslau SS, Pereira IA., Biochim. Biophys. Acta 1827(2), 2012
PMID: 22982583
Accelerated Profile HMM Searches.
Eddy SR., PLoS Comput. Biol. 7(10), 2011
PMID: 22039361
QUAST: quality assessment tool for genome assemblies.
Gurevich A, Saveliev V, Vyahhi N, Tesler G., Bioinformatics 29(8), 2013
PMID: 23422339
Reverse methanogenesis: testing the hypothesis with environmental genomics.
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF., Science 305(5689), 2004
PMID: 15353801
The TIGRFAMs database of protein families.
Haft DH, Selengut JD, White O., Nucleic Acids Res. 31(1), 2003
PMID: 12520025
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW., Nature 500(7464), 2013
PMID: 23892779
Thermophilic anaerobic oxidation of methane by marine microbial consortia.
Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU, Teske A, Boetius A, Wegener G., ISME J 5(12), 2011
PMID: 21697963
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities.
Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin YS, Holler T, Mollar XP, Knittel K, Hinrichs KU., Proc. Natl. Acad. Sci. U.S.A. 109(47), 2012
PMID: 23129626
Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments.
Kleindienst S, Ramette A, Amann R, Knittel K., Environ. Microbiol. 14(10), 2012
PMID: 22882476
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572

Knittel, 2010
Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon)
Knittel, Geomicrobiol J 20(), 2003
SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data.
Kopylova E, Noe L, Touzet H., Bioinformatics 28(24), 2012
PMID: 23071270
A conspicuous nickel protein in microbial mats that oxidize methane anaerobically.
Kruger M, Meyerdierks A, Glockner FO, Amann R, Widdel F, Kube M, Reinhardt R, Kahnt J, Bocher R, Thauer RK, Shima S., Nature 426(6968), 2003
PMID: 14685246
Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane.
Krukenberg V, Harding K, Richter M, Glockner FO, Gruber-Vodicka HR, Adam B, Berg JS, Knittel K, Tegetmeyer HE, Boetius A, Wegener G., Environ. Microbiol. 18(9), 2016
PMID: 26971539
Thermophilic archaea activate butane via alkyl-coenzyme M formation.
Laso-Perez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F., Nature 539(7629), 2016
PMID: 27749816
Tunable metallic-like conductivity in microbial nanowire networks.
Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR., Nat Nanotechnol 6(9), 2011
PMID: 21822253
Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens
Malvankar, Energy Environ Sci 5(), 2012
Hydrothermal vents and the origin of life.
Martin W, Baross J, Kelley D, Russell MJ., Nat. Rev. Microbiol. 6(11), 2008
PMID: 18820700
Single cell activity reveals direct electron transfer in methanotrophic consortia.
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ., Nature 526(7574), 2015
PMID: 26375009
Thermal and geochemical influences on microbial biogeography in the hydrothermal sediments of Guaymas Basin, Gulf of California.
McKay L, Klokman VW, Mendlovitz HP, LaRowe DE, Hoer DR, Albert D, Amend JP, Teske A., Environ Microbiol Rep 8(1), 2016
PMID: 26637109
Detection of putatively thermophilic anaerobic methanotrophs in diffuse hydrothermal vent fluids.
Merkel AY, Huber JA, Chernyh NA, Bonch-Osmolovskaya EA, Lebedinsky AV., Appl. Environ. Microbiol. 79(3), 2012
PMID: 23183981
Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
Meyerdierks A, Kube M, Lombardot T, Knittel K, Bauer M, Glockner FO, Reinhardt R, Amann R., Environ. Microbiol. 7(12), 2005
PMID: 16309392
Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group.
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glockner FO, Reinhardt R, Amann R., Environ. Microbiol. 12(2), 2009
PMID: 19878267
Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB., Science 297(5583), 2002
PMID: 12169733
Zero-valent sulphur is a key intermediate in marine methane oxidation.
Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM., Nature 491(7425), 2012
PMID: 23135396
Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia.
Milucka J, Widdel F, Shima S., Environ. Microbiol. 15(5), 2012
PMID: 23095164
Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens.
Muller V, Imkamp F, Biegel E, Schmidt S, Dilling S., Ann. N. Y. Acad. Sci. 1125(), 2008
PMID: 18378592
Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A., Nature 443(7113), 2006
PMID: 17051217
Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF., Appl. Environ. Microbiol. 67(4), 2001
PMID: 11282650
Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.
Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF., Science 293(5529), 2001
PMID: 11463914
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW., Genome Res. 25(7), 2015
PMID: 25977477
A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea.
Pereira IA, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS., Front Microbiol 2(), 2011
PMID: 21747791
Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria.
Pernthaler A, Amann R., Appl. Environ. Microbiol. 70(9), 2004
PMID: 15345429
A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774.
Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IA., Biochim. Biophys. Acta 1605(1-3), 2003
PMID: 12907302
The Pfam protein families database.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22127870
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23193283
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes.
Rabus R, Venceslau SS, Wohlbrand L, Voordouw G, Wall JD, Pereira IA., Adv. Microb. Physiol. 66(), 2015
PMID: 26210106
A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
Rotaru, Energy Environ Sci 7(), 2014
Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.
Ruff SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M., Front Microbiol 7(), 2016
PMID: 27065954
Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrgenophilus
Schauder, Arch Microbiol 148(), 1987
Energetics of syntrophic cooperation in methanogenic degradation.
Schink B., Microbiol. Mol. Biol. Rev. 61(2), 1997
PMID: 9184013
Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase.
Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W., Mol. Gen. Genet. 241(5-6), 1993
PMID: 8264535
Prokka: rapid prokaryotic genome annotation.
Seemann T., Bioinformatics 30(14), 2014
PMID: 24642063
Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea.
Shima S, Warkentin E, Grabarse W, Sordel M, Wicke M, Thauer RK, Ermler U., J. Mol. Biol. 300(4), 2000
PMID: 10891279
Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea
Skennerton, MBio 8(), 2017
Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments.
Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH., Environ. Microbiol. 14(5), 2012
PMID: 22404914
The binning of metagenomic contigs for microbial physiology of mixed cultures
Strous, Font Microbiol 3(), 2012
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR., Science 330(6009), 2010
PMID: 21127257
Reverse Methanogenesis and Respiration in Methanotrophic Archaea.
Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ., Archaea 2017(), 2017
PMID: 28154498
The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism.
Venceslau SS, Stockdreher Y, Dahl C, Pereira IA., Biochim. Biophys. Acta 1837(7), 2014
PMID: 24662917
Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms.
Walker DJ, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR., ISME J 12(1), 2017
PMID: 28872631
Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways.
Wang FP, Zhang Y, Chen Y, He Y, Qi J, Hinrichs KU, Zhang XX, Xiao X, Boon N., ISME J 8(5), 2013
PMID: 24335827
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria.
Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A., Nature 526(7574), 2015
PMID: 26490622
Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane.
Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K., Front Microbiol 7(), 2016
PMID: 26870011
New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov
Widdel, Arch Microbiol 148(), 1987
PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS., Bioinformatics 26(13), 2010
PMID: 20472543
The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
Zheng K, Ngo PD, Owens VL, Yang XP, Mansoorabadi SO., Science 354(6310), 2016
PMID: 27846569
DNA recovery from soils of diverse composition.
Zhou J, Bruns MA, Tiedje JM., Appl. Environ. Microbiol. 62(2), 1996
PMID: 8593035
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29468803
PubMed | Europe PMC

Suchen in

Google Scholar