Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering

Wrede O, Reimann Y, Lülsdorf S, Emmrich D, Schneider K, Schmid AJ, Zauser D, Hannappel Y, Beyer A, Schweins R, Gölzhäuser A, et al. (2018)
Scientific Reports 8: 13781.

Download
OA 3.19 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
The use of smart colloidal microgels for advanced applications critically depends on their response kinetics. We use pressure jump small angle neutron scattering with supreme time resolution to study the rapid volume phase transition kinetics of such microgels. Utilizing the pressure induced microphase separation inside the microgels we were able to resolve their collapse and swelling kinetics. While the collapse occurs on a time scale of 10 ms, the particle swelling turned out to be much faster. Photon correlation spectroscopy and static small angle neutron scattering unambiguously show, that the much slower collapse can be associated with the complex particle architecture exhibiting a loosely-crosslinked outer region and a denser inner core region. These insights into the kinetics of stimuli-responsive materials are of high relevance for their applications as nano-actuators, sensors or drug carriers. Moreover, the used refined pressure jump small angle neutron scattering technique is of broad interest for soft matter studies.
Erscheinungsjahr
Zeitschriftentitel
Scientific Reports
Band
8
Art.-Nr.
13781
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Wrede O, Reimann Y, Lülsdorf S, et al. Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports. 2018;8: 13781.
Wrede, O., Reimann, Y., Lülsdorf, S., Emmrich, D., Schneider, K., Schmid, A. J., Zauser, D., et al. (2018). Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports, 8, 13781. doi:10.1038/s41598-018-31976-4
Wrede, O., Reimann, Y., Lülsdorf, S., Emmrich, D., Schneider, K., Schmid, A. J., Zauser, D., Hannappel, Y., Beyer, A., Schweins, R., et al. (2018). Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports 8:13781.
Wrede, O., et al., 2018. Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports, 8: 13781.
O. Wrede, et al., “Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering”, Scientific Reports, vol. 8, 2018, : 13781.
Wrede, O., Reimann, Y., Lülsdorf, S., Emmrich, D., Schneider, K., Schmid, A.J., Zauser, D., Hannappel, Y., Beyer, A., Schweins, R., Gölzhäuser, A., Hellweg, T., Sottmann, T.: Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports. 8, : 13781 (2018).
Wrede, Oliver, Reimann, Yvonne, Lülsdorf, Stefan, Emmrich, Daniel, Schneider, Kristina, Schmid, Andreas Josef, Zauser, Diana, Hannappel, Yvonne, Beyer, André, Schweins, Ralf, Gölzhäuser, Armin, Hellweg, Thomas, and Sottmann, Thomas. “Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering”. Scientific Reports 8 (2018): 13781.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-09-25T06:57:58Z

58 References

Daten bereitgestellt von Europe PubMed Central.

Thermosensitive core-shell particles as carrier systems for metallic nanoparticles.
Lu Y, Mei Y, Ballauff M, Drechsler M., J Phys Chem B 110(9), 2006
PMID: 16509678
Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks
Lu Y, Mei Y, Drechsler M, Ballauff M., 2006
Soft nanotechnology with soft nanoparticles.
Nayak S, Lyon LA., Angew. Chem. Int. Ed. Engl. 44(47), 2005
PMID: 16283684
Patterned Thermoresponsive Microgel Coatings for Noninvasive Processing of Adherent Cells.
Uhlig K, Wegener T, He J, Zeiser M, Bookhold J, Dewald I, Godino N, Jaeger M, Hellweg T, Fery A, Duschl C., Biomacromolecules 17(3), 2016
PMID: 26879608
Zwitterionic poly(betaine-N-isopropylacrylamide) microgels: Properties and applications
Das M, Sanson N, Kumacheva E., 2008
Biological imaging and sensing with multiresponsive microgels
Zhang QM, Wang W, Su Y-Q, Hensen EJM, Serpe MJ., 2016
Enhancing detection sensitivity of responsive microgel-based Cu(ii) chemosensors via thermo-induced volume phase transitions
Liu T., 2009
Linearly thermoresponsive core-shell microgels: Towards a new class of nanoactuators
Zeiser M, Freudensprung I, Hellweg T., 2012
Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel.
Pernia Leal M, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T., ACS Nano 6(12), 2012
PMID: 23116285
Core/shell microgels decouple the pH and temperature responsivities of microgel films
Clarke KC, Dunham SN, Lyon LA., 2015
Optical and acoustic studies of pH-dependent swelling in microgel thin films
Serpe MJ, Lyon LA., 2004
Hydrogel microparticles as dynamically tunable microlenses.
Kim J, Serpe MJ, Lyon LA., J. Am. Chem. Soc. 126(31), 2004
PMID: 15291534
Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres.
Dai Y, Ma P, Cheng Z, Kang X, Zhang X, Hou Z, Li C, Yang D, Zhai X, Lin J., ACS Nano 6(4), 2012
PMID: 22435911
Polyampholyte microgels with anionic core and cationic shell
Schachschal S., 2010
Microgel size modulation by electrochemical switching
Mergel O, Wünnemann P, Simon U, Böker A, Plamper FA., 2015
Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels.
Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T., Langmuir 24(12), 2008
PMID: 18489184
Salt effects over the swelling of ionized mesoscopic gels
Fernandez-Nieves A, Fernandez-Barbero A, de FJ., 2001
Functional Microgels and Microgel Systems.
Plamper FA, Richtering W., Acc. Chem. Res. 50(2), 2017
PMID: 28186408
Structure of sodium dodecyl sulfate bound to a poly(NIPAM) microgel particle
Mears SJ, Deng Y, Cosgrove T, Pelton R., 1997
Poly(NIPAM) microgel particle de-swelling: a light scattering and small-angle neutron scattering study
Crowther HM., 1999
Structural changes in pNIPA microgel particles as seen by SANS, DLS, and EM techniques
Kratz K, Hellweg T, Eimer W., 2001
Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering.
Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E., Phys Rev E Stat Nonlin Soft Matter Phys 66(5 Pt 1), 2002
PMID: 12513512
Static light scattering from microgel particles: model of variable dielectric permittivity.
Fernandez-Nieves A, de las Nieves FJ, Fernandez-Barbero A., J Chem Phys 120(1), 2004
PMID: 15267298
3D Structures of Responsive Nanocompartmentalized Microgels.
Gelissen AP, Oppermann A, Caumanns T, Hebbeker P, Turnhoff SK, Tiwari R, Eisold S, Simon U, Lu Y, Mayer J, Richtering W, Walther A, Woll D., Nano Lett. 16(11), 2016
PMID: 27701865
Superresolution microscopy of the volume phase transition of pnipam microgels
Conley GM, Nöjd S, Braibanti M, Schurtenberger P., 2016
Non NIPAM based smart microgels: Systematic variation of the volume phase transition temperature by copolymerization
Wedel B, Zeiser M, Hellweg T., 2012

AUTHOR UNKNOWN, 0
Tunable swelling kinetics in core--shell hydrogel nanoparticles.
Gan D, Lyon LA., J. Am. Chem. Soc. 123(31), 2001
PMID: 11480971
Compression and Reswelling of Microgel Particles after an Osmotic Shock.
Sleeboom JJF, Voudouris P, Punter MTJJM, Aangenendt FJ, Florea D, van der Schoot P, Wyss HM., Phys. Rev. Lett. 119(9), 2017
PMID: 28949568
Dynamics of swelling and drying in a spherical gel
Bertrand T, Peixinho J, Mukhopadhyay S, MacMinn CW., 2016
Kinetics of swelling of gels
Tanaka T, Fillmore DJ., 1979
Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions.
Wang J, Gan D, Lyon LA, El-Sayed MA., J. Am. Chem. Soc. 123(45), 2001
PMID: 11697971

AUTHOR UNKNOWN, 0
Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels
Grobelny S., 2013
Fine-Tuning the Structure of Stimuli-Responsive Polymer Films by Hydrostatic Pressure and Temperature
Reinhardt M., 2013
Preparation of aqueous latices with n-isopropylacrylamide
Pelton RH, Chibante P., 1986

AUTHOR UNKNOWN, 0
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Golzhauser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
Core-Shell Microgel-Based Surface Coatings with Linear Thermoresponse.
Cors M, Wrede O, Genix AC, Anselmetti D, Oberdisse J, Hellweg T., Langmuir 33(27), 2017
PMID: 28628746
Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids.
Stieger M, Richtering W, Pedersen JS, Lindner P., J Chem Phys 120(13), 2004
PMID: 15267506
Polymer conformation in nanoscopic soft confinement.
Kuttich B, Grillo I, Schottner S, Gallei M, Stuhn B., Soft Matter 13(38), 2017
PMID: 28829089
Kinetics of pressure induced structural changes in super- or near-critical CO2-microemulsions.
Muller A, Putz Y, Oberhoffer R, Becker N, Strey R, Wiedenmann A, Sottmann T., Phys Chem Chem Phys 16(34), 2014
PMID: 25061846
Internal dynamics in colloidal pNIPAM microgel particles immobilised in a mesoscopic crystal
Hellweg T, Kratz K, Pouget S, Eimer W., 2002
Volume phase transition of swollen gels: Discontinuous or continuous
Wu C, Zhou S., 1997
Mesoscale modeling of microgel mechanics and kinetics through the swelling transition
Nikolov S, Fernandez-Nieves A, Alexeev A., 2018
Hydrogen-bond-assisted syndiotactic-specific radical polymerizations of N-alkylacrylamides: The effect of the N-substituents on the stereospecificities and unusual large hysteresis in the phase-transition behavior of aqueous solution of syndiotactic poly(N-n-propylacrylamide)
Hirano T., 2008
Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells.
Schurmann M, Frese N, Beyer A, Heimann P, Widera D, Monkemoller V, Huser T, Kaltschmidt B, Kaltschmidt C, Golzhauser A., Small 11(43), 2015
PMID: 26436577
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
A constrained regularization method for inverting data represented by linear algebraic or integral equations
Provencher SW., 1982
Contin: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
Provencher SW., 1982
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants
Koppel DE., 1972
Modification to the cumulant analysis of polydispersity in quasielastic light scattering data.
Hassan PA, Kulshreshtha SK., J Colloid Interface Sci 300(2), 2006
PMID: 16790246

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30213960
PubMed | Europe PMC

Suchen in

Google Scholar