Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity

Dieker P, Beckmann L, Teckentrup J, Schielzeth H (2018)
ECOLOGY AND EVOLUTION 8(15): 7273-7284.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dieker, Petra; Beckmann, Luisa; Teckentrup, JuliaUniBi; Schielzeth, Holger
Abstract / Bemerkung
Discrete color polymorphisms represent a fascinating aspect of intraspecific diversity. Color morph ratios often vary clinally, but in some cases, there are no marked clines and mixes of different morphs occur at appreciable frequencies in most populations. This poses the questions of how polymorphisms are maintained. We here study the spatial and temporal distribution of a very conspicuous color polymorphism in the club-legged grasshopper Gomphocerussibiricus. The species occurs in a green and a nongreen (predominately brown) morph, a green-brown polymorphism that is common among Orthopteran insects. We sampled color morph ratios at 42 sites across the alpine range of the species and related color morph ratios to local habitat parameters and climatic conditions. Green morphs occurred in both sexes, and their morph ratios were highly correlated among sites, suggesting shared control of the polymorphism in females and males. We found that in at least 40 of 42 sites green and brown morphs co-occurred with proportions of green ranging from 0% to 70% with significant spatial heterogeneity. The proportion of green individuals tended to increase with decreasing summer and winter precipitations. Nongreen individuals can be further distinguished into brown and pied individuals, and again, this polymorphism is shared with other grasshopper species. We found pied individuals at all sites with proportions ranging from 3% to 75%, with slight, but significant variation between years. Pied morphs show a clinal increase in frequency from east to west and decreased with altitude and lower temperatures and were more common on grazed sites. The results suggest that both small-scale and large-scale spatial heterogeneity affects color morph ratios. The almost universal co-occurrence of all three color morphs argues against strong effects of genetic drift. Instead, the data suggest that small-scale migration-selection balance and/or local balancing selection maintain populations polymorphic.
Stichworte
balancing selection; Color polymorphism; habitat heterogeneity; local; adaptation; Orthoptera
Erscheinungsjahr
2018
Zeitschriftentitel
ECOLOGY AND EVOLUTION
Band
8
Ausgabe
15
Seite(n)
7273-7284
ISSN
2045-7758
Page URI
https://pub.uni-bielefeld.de/record/2931118

Zitieren

Dieker P, Beckmann L, Teckentrup J, Schielzeth H. Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. ECOLOGY AND EVOLUTION. 2018;8(15):7273-7284.
Dieker, P., Beckmann, L., Teckentrup, J., & Schielzeth, H. (2018). Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. ECOLOGY AND EVOLUTION, 8(15), 7273-7284. doi:10.1002/ece3.4156
Dieker, P., Beckmann, L., Teckentrup, J., and Schielzeth, H. (2018). Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. ECOLOGY AND EVOLUTION 8, 7273-7284.
Dieker, P., et al., 2018. Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. ECOLOGY AND EVOLUTION, 8(15), p 7273-7284.
P. Dieker, et al., “Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity”, ECOLOGY AND EVOLUTION, vol. 8, 2018, pp. 7273-7284.
Dieker, P., Beckmann, L., Teckentrup, J., Schielzeth, H.: Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity. ECOLOGY AND EVOLUTION. 8, 7273-7284 (2018).
Dieker, Petra, Beckmann, Luisa, Teckentrup, Julia, and Schielzeth, Holger. “Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity”. ECOLOGY AND EVOLUTION 8.15 (2018): 7273-7284.

53 References

Daten bereitgestellt von Europe PubMed Central.

Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance
AUTHOR UNKNOWN, 2006
Fitting linear mixed‐effects models using lme4
AUTHOR UNKNOWN, 2015
Fluctuating selection: the perpetual renewal of adaptation in variable environments.
Bell G., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365(1537), 2010
PMID: 20008388

AUTHOR UNKNOWN, 2006

AUTHOR UNKNOWN, 2009
Controlling the false discovery rate: A practical and powerful approach to multiple testing
AUTHOR UNKNOWN, 1995
Apostatic selection by blue jays produces balanced polymorphism in virtual prey
AUTHOR UNKNOWN, 1998
Color phenotypes are under similar genetic control in two distantly related species of Timema stick insect.
Comeault AA, Carvalho CF, Dennis S, Soria-Carrasco V, Nosil P., Evolution 70(6), 2016
PMID: 27130287

AUTHOR UNKNOWN, 2016

AUTHOR UNKNOWN, 1990
Behavioural and ecological consequences of limited attention.
Dukas R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357(1427), 2002
PMID: 12495511
The evolution of dominance in certain polymorphic species
AUTHOR UNKNOWN, 1930
Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene.
Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB., Nature 447(7141), 2007
PMID: 17495926

AUTHOR UNKNOWN, 1965
Some like it hot: Intra‐population variation in behavioral thermoregulation in color‐polymorphic pygmy grasshoppers
AUTHOR UNKNOWN, 2000
Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse.
Forstmeier W, Schielzeth H., Behav. Ecol. Sociobiol. (Print) 65(1), 2010
PMID: 21297852
Pigments and color changes
AUTHOR UNKNOWN, 1972
Linking color polymorphism maintenance and speciation.
Gray SM, McKinnon JS., Trends Ecol. Evol. (Amst.) 22(2), 2006
PMID: 17055107
Morphism and evolution
AUTHOR UNKNOWN, 1955
Dynamik von Heuschrecken‐Populationen (Orthoptera: Saltoatoria) in subalpinen und alpinen Rasen des Nationalparks Hohe Tauern (Österreichische Zentralalpen) von 1990 bis 1997
AUTHOR UNKNOWN, 1999

AUTHOR UNKNOWN, 1998
Data from: Climatologies at high resolution for the earth's land surface areas, Dryad Digital Repository
AUTHOR UNKNOWN, 2017
Climatologies at high resolution for the earth's land surface areas.
Karger DN, Conrad O, Bohner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M., Sci Data 4(), 2017
PMID: 28872642
Matching habitat choice by experimentally mismatched phenotypes
AUTHOR UNKNOWN, 2012

AUTHOR UNKNOWN, 2007
Phylogenomics resolves the timing and pattern of insect evolution.
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspock U, Aspock H, Bartel D, Blanke A, Berger S, Bohm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schutte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X., Science 346(6210), 2014
PMID: 25378627
Directional selection in temporally replicated studies is remarkably consistent.
Morrissey MB, Hadfield JD., Evolution 66(2), 2011
PMID: 22276539

AUTHOR UNKNOWN, 2009
Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists.
Nakagawa S, Schielzeth H., Biol Rev Camb Philos Soc 85(4), 2010
PMID: 20569253
Perceptual processes and the maintenance of polymorphism through frequency‐dependent predation
AUTHOR UNKNOWN, 2005
The variable coloration of the Acridoid grasshoppers
AUTHOR UNKNOWN, 1971
Biochemistry and biosynthesis of insect pigments
AUTHOR UNKNOWN, 2014
It's about time: the temporal dynamics of phenotypic selection in the wild.
Siepielski AM, DiBattista JD, Carlson SM., Ecol. Lett. 12(11), 2009
PMID: 19740111
Density‐dependent phase polyphenism in nonmodel locusts: A minireview
AUTHOR UNKNOWN, 2011
rptR: Repeatability estimation and variance decomposition by generalized linear mixed‐effects models
AUTHOR UNKNOWN, 2017
Evolutionary dynamics and population biology of a polymorphic insect.
Svensson EI, Abbott J., J. Evol. Biol. 18(6), 2005
PMID: 16313463
The mechanism controlling phenotypic plasticity of body color in the desert locust: some recent progress.
Tanaka S, Harano KI, Nishide Y, Sugahara R., Curr Opin Insect Sci 17(), 2016
PMID: 27720068

AUTHOR UNKNOWN, 1966
Phenotype manipulation influences microhabitat choice in pygmy grasshoppers
AUTHOR UNKNOWN, 2012

AUTHOR UNKNOWN, 2003

AUTHOR UNKNOWN, 2008
The genetic architecture of adaptation under migration-selection balance.
Yeaman S, Whitlock MC., Evolution 65(7), 2011
PMID: 21729046

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30151148
PubMed | Europe PMC

Suchen in

Google Scholar