GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach

Müller R, Nebel M (2018)
BMC Bioinformatics 19(1): 321.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.39 MB
Abstract / Bemerkung
**Background**: Massive genomic data sets from high-throughput sequencing allow for new insights into complex biological systems such as microbial communities. Analyses of their diversity and structure are typically preceded by clustering millions of 16S rRNA gene sequences into OTUs. Swarm introduced a new clustering strategy which addresses important conceptual and performance issues of the popular de novo clustering approach. However, some parts of the new strategy, e.g. the fastidious option for increased clustering quality, come with their own restrictions. **Results:** In this paper, we present the new exact, alignment-based de novo clustering tool GeFaST, which implements a generalisation of Swarm’s fastidious clustering. Our tool extends the fastidious option to arbitrary clustering thresholds and allows to adjust its greediness. GeFaST was evaluated on mock-community and natural data and achieved higher clustering quality and performance for small to medium clustering thresholds compared to Swarm and other de novo tools. Clustering with GeFaST was between 6 and 197 times as fast as with Swarm, while the latter required up to 38% less memory for non-fastidious clustering but at least three times as much memory for fastidious clustering. **Conclusions:** GeFaST extends the scope of Swarm’s clustering strategy by generalising its fastidious option, thereby allowing for gains in clustering quality, and by increasing its performance (especially in the fastidious case). Our evaluations showed that GeFaST has the potential to leverage the use of the (fastidious) clustering strategy for higher thresholds and on larger data sets.
Stichworte
Sequence clustering; Operational taxonomic units; Microbial community analysis
Erscheinungsjahr
2018
Zeitschriftentitel
BMC Bioinformatics
Band
19
Ausgabe
1
Art.-Nr.
321
ISSN
1471-2105
eISSN
1471-2105
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2931048

Zitieren

Müller R, Nebel M. GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach. BMC Bioinformatics. 2018;19(1): 321.
Müller, R., & Nebel, M. (2018). GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach. BMC Bioinformatics, 19(1), 321. doi:10.1186/s12859-018-2349-1
Müller, Robert, and Nebel, Markus. 2018. “GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach”. BMC Bioinformatics 19 (1): 321.
Müller, R., and Nebel, M. (2018). GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach. BMC Bioinformatics 19:321.
Müller, R., & Nebel, M., 2018. GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach. BMC Bioinformatics, 19(1): 321.
R. Müller and M. Nebel, “GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach”, BMC Bioinformatics, vol. 19, 2018, : 321.
Müller, R., Nebel, M.: GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach. BMC Bioinformatics. 19, : 321 (2018).
Müller, Robert, and Nebel, Markus. “GeFaST: An improved method for OTU assignment by generalising Swarm’s fastidious clustering approach”. BMC Bioinformatics 19.1 (2018): 321.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:01Z
MD5 Prüfsumme
6467f69717a04cf519369e4ae6f1ab7c


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

25 References

Daten bereitgestellt von Europe PubMed Central.

Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.
Bonham-Carter O, Steele J, Bastola D., Brief. Bioinformatics 15(6), 2013
PMID: 23904502
Search and clustering orders of magnitude faster than BLAST.
Edgar RC., Bioinformatics 26(19), 2010
PMID: 20709691
DNACLUST: accurate and efficient clustering of phylogenetic marker genes.
Ghodsi M, Liu B, Pop M., BMC Bioinformatics 12(), 2011
PMID: 21718538
CD-HIT: accelerated for clustering the next-generation sequencing data.
Fu L, Niu B, Zhu Z, Wu S, Li W., Bioinformatics 28(23), 2012
PMID: 23060610
Swarm: robust and fast clustering method for amplicon-based studies.
Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M., PeerJ 2(), 2014
PMID: 25276506
Swarm v2: highly-scalable and high-resolution amplicon clustering.
Mahe F, Rognes T, Quince C, de Vargas C, Dunthorn M., PeerJ 3(), 2015
PMID: 26713226
Approximate string-matching with q-grams and maximal matches
Ukkonen E., 1992
Space/time trade-offs in hash coding with allowable errors
Bloom BH., 1970
A Partition-Based Method for String Similarity Joins with Edit-Distance Constraints
Li G, Deng D, Feng J., 2013
Algorithms for approximate string matching
Ukkonen E., 1985
Large-Scale Similarity Join with Edit-Distance Constraints
Lin C, Yu H, Weng W, He X., 2014

AUTHOR UNKNOWN, 0
An improved algorithm for matching biological sequences.
Gotoh O., J. Mol. Biol. 162(3), 1982
PMID: 7166760
Composition, variability, and temporal stability of the intestinal microbiota of the elderly.
Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW., Proc. Natl. Acad. Sci. U.S.A. 108 Suppl 1(), 2010
PMID: 20571116
VSEARCH: a versatile open source tool for metagenomics.
Rognes T, Flouri T, Nichols B, Quince C, Mahe F., PeerJ 4(), 2016
PMID: 27781170
SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences
Mercier C, Boyer F, Bonin A, Coissac É., 2013
Objective Criteria for the Evaluation of Clustering Methods
Rand WM., 1971
Comparing partitions
Hubert L, Arabie P., 1985
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL., Appl. Environ. Microbiol. 72(7), 2006
PMID: 16820507
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO., Nucleic Acids Res. 41(Database issue), 2012
PMID: 23193283

AUTHOR UNKNOWN, 0

Jacobson GJ., 1988
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30208838
PubMed | Europe PMC

Suchen in

Google Scholar