Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum

Sgobba E, Blöbaum L, Wendisch VF (2018)
Frontiers in Microbiology 9: 2046.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
OA 1.80 MB
Autor/in
Abstract / Bemerkung
Corynebacterium glutamicum is used for the million-ton-scale production of food and feed amino acids such as L-glutamate and L-lysine and has been engineered for production of carotenoids such as lycopene. These fermentation processes are based on sugars present in molasses and starch hydrolysates. Due to competing uses of starch and sugars in human nutrition, this bacterium has been engineered for utilization of alternative feedstocks, for example, pentose sugars present in lignocellulosic and hexosamines such as glucosamine (GlcN) and N-acetyl-D-glucosamine (GlcNAc). This study describes strain engineering and fermentation using N-acetyl-D-muramic acid (MurNAc) as non-food-competing feedstock. To this end, the genes encoding the MurNAc-specific PTS subunits MurP and Crr and the etherase MurQ from Escherichia coli K-12 were expressed in C. glutamicumΔnanR. While MurP and MurQ were required to allow growth of C. glutamicumΔnanR with MurNAc, heterologous Crr was not, but it increased the growth rate in MurNAc minimal medium from 0.15 h-1 to 0.20 h-1. When in addition to murP-murQ-crr the GlcNAc-specific PTS gene nagE from C. glycinophilum was expressed in C. glutamicumΔnanR, the resulting strain could utilize blends of GlcNAc and MurNAc. Fermentative production of the amino acids L-glutamate and L-lysine, the carotenoid lycopene, and the L-lysine derived chemicals 1,5-diaminopentane and L-pipecolic acid either from MurNAc alone or from MurNAc-GlcNAc blends was shown. MurNAc and GlcNAc are the major components of the bacterial cell wall and bacterial biomass is an underutilized side product of large-scale bacterial production of organic acids, amino acids or enzymes. The proof-of-concept for valorization of MurNAc reached here has potential for biorefinery applications to convert non-food-competing feedstocks or side-streams to valuable products such as food and feed additives.
Erscheinungsjahr
2018
Zeitschriftentitel
Frontiers in Microbiology
Band
9
Art.-Nr.
2046
eISSN
1664-302X
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
Page URI
https://pub.uni-bielefeld.de/record/2930465

Zitieren

Sgobba E, Blöbaum L, Wendisch VF. Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Frontiers in Microbiology. 2018;9: 2046.
Sgobba, E., Blöbaum, L., & Wendisch, V. F. (2018). Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Frontiers in Microbiology, 9, 2046. doi:10.3389/fmicb.2018.02046
Sgobba, E., Blöbaum, L., and Wendisch, V. F. (2018). Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Frontiers in Microbiology 9:2046.
Sgobba, E., Blöbaum, L., & Wendisch, V.F., 2018. Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Frontiers in Microbiology, 9: 2046.
E. Sgobba, L. Blöbaum, and V.F. Wendisch, “Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum”, Frontiers in Microbiology, vol. 9, 2018, : 2046.
Sgobba, E., Blöbaum, L., Wendisch, V.F.: Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Frontiers in Microbiology. 9, : 2046 (2018).
Sgobba, Elvira, Blöbaum, Luisa, and Wendisch, Volker F. “Production of food and feed additives from non-food-competing feedstocks. Valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum”. Frontiers in Microbiology 9 (2018): 2046.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:50:39Z
MD5 Prüfsumme
b77a97a4951411f1f1f9a87839501bbb

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Whole Cell Actinobacteria as Biocatalysts.
Anteneh YS, Franco CMM., Front Microbiol 10(), 2019
PMID: 30833932

55 References

Daten bereitgestellt von Europe PubMed Central.

“Regulation of carbon metabolism in Corynebacterium glutamicum,” in
Arndt A., Eikmanns B.., 2008
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
Comparative genomic analyses of the bacterial phosphotransferase system.
Barabote RD, Saier MH Jr., Microbiol. Mol. Biol. Rev. 69(4), 2005
PMID: 16339738
Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase.
Borisova M, Gaupp R, Duckworth A, Schneider A, Dalugge D, Muhleck M, Deubel D, Unsleber S, Yu W, Muth G, Bischoff M, Gotz F, Mayer C., MBio 7(5), 2016
PMID: 27729505
N-acetylglucosamine: production and applications.
Chen JK, Shen CR, Liu CL., Mar Drugs 8(9), 2010
PMID: 20948902
Identification of a phosphotransferase system of Escherichia coli required for growth on N-acetylmuramic acid.
Dahl U, Jaeger T, Nguyen BT, Sattler JM, Mayer C., J. Bacteriol. 186(8), 2004
PMID: 15060041
Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum.
Dominguez H., Cocaign-Bousquet M., Lindley N.., 1997

Domsch K.., 1982

Eggeling L., Bott M.., 2005
“Central metabolism: Tricarboxylic acid cycle and anaplerotic reactions,” in
Eikmanns B.., 2005
RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ., J. Bacteriol. 186(9), 2004
PMID: 15090522
Enzymatic assembly of overlapping DNA fragments.
Gibson DG., Meth. Enzymol. 498(), 2011
PMID: 21601685
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Wendisch VF., BMC Microbiol. 12(), 2012
PMID: 22963379
Scission of the lactyl ether bond of N-acetylmuramic acid by Escherichia coli "etherase".
Jaeger T, Arsic M, Mayer C., J. Biol. Chem. 280(34), 2005
PMID: 15983044
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol. 10(), 2010
PMID: 21159175
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672486
Studies on the amino acid fermentation. Production of l-glutamic acid by various microorganisms.
Kinoshita S., Udaka S., Shimono M.., 1957
Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF., BMC Microbiol. 16(1), 2016
PMID: 27492186
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Perez-Garcia F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Perez-Garcia F, Peters-Wendisch P, Wendisch VF., Appl. Microbiol. Biotechnol. 100(18), 2016
PMID: 27345060
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Peptidoglycan turnover and recycling in Gram-positive bacteria.
Reith J, Mayer C., Appl. Microbiol. Biotechnol. 92(1), 2011
PMID: 21796380
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
The complete phosphotransferase system in Escherichia coli.
Tchieu JH, Norris V, Edwards JS, Saier MH Jr., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361063
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K., Appl. Microbiol. Biotechnol. 97(4), 2012
PMID: 22854894
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 190(19), 2008
PMID: 18658264
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 191(17), 2009
PMID: 19581365
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Production of Glucosamine from Chitin by Co-solvent Promoted Hydrolysis and Deacetylation.
Zhang J., Yan N.., 2017
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 30319554
PubMed | Europe PMC

Suchen in

Google Scholar