One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst
Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF (2018)
Scientific Reports 8(1): 12895.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s41598-018-31309-5.wendisch.pdf
1.75 MB
Autor*in
Mindt, MelanieUniBi;
Risse, Joe MaxUniBi ;
Gruß, HendrikUniBi;
Sewald, NorbertUniBi ;
Eikmanns, Bernhard J.;
Wendisch, Volker F.UniBi
Einrichtung
Abstract / Bemerkung
N-methylated amino acids are found in Nature in various biological compounds. N-methylation of amino acids has been shown to improve pharmacokinetic properties of peptide drugs due to conformational changes, improved proteolytic stability and/or higher lipophilicity. Due to these characteristics N-methylated amino acids received increasing interest by the pharmaceutical industry. Syntheses of N-methylated amino acids by chemical and biocatalytic approaches are known, but often show incomplete stereoselectivity, low yields or expensive co-factor regeneration. So far a one-step fermentative process from sugars has not yet been described. Here, a one-step conversion of sugars and methylamine to the N-methylated amino acid N-methyl-l-alanine was developed. A whole-cell biocatalyst was derived from a pyruvate overproducing C. glutamicum strain by heterologous expression of the N-methyl-l-amino acid dehydrogenase gene from Pseudomonas putida. As proof-of-concept, N-methyl-l-alanine titers of 31.7 g L−1 with a yield of 0.71 g per g glucose were achieved in fed-batch cultivation. The C. glutamicum strain producing this imine reductase enzyme was engineered further to extend this green chemistry route to production of N-methyl-l-alanine from alternative feed stocks such as starch or the lignocellulosic sugars xylose and arabinose.
Erscheinungsjahr
2018
Zeitschriftentitel
Scientific Reports
Band
8
Ausgabe
1
Art.-Nr.
12895
Urheberrecht / Lizenzen
ISSN
2045-2322
eISSN
2045-2322
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2930292
Zitieren
Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports. 2018;8(1): 12895.
Mindt, M., Risse, J. M., Gruß, H., Sewald, N., Eikmanns, B. J., & Wendisch, V. F. (2018). One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports, 8(1), 12895. doi:10.1038/s41598-018-31309-5
Mindt, Melanie, Risse, Joe Max, Gruß, Hendrik, Sewald, Norbert, Eikmanns, Bernhard J., and Wendisch, Volker F. 2018. “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”. Scientific Reports 8 (1): 12895.
Mindt, M., Risse, J. M., Gruß, H., Sewald, N., Eikmanns, B. J., and Wendisch, V. F. (2018). One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports 8:12895.
Mindt, M., et al., 2018. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports, 8(1): 12895.
M. Mindt, et al., “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”, Scientific Reports, vol. 8, 2018, : 12895.
Mindt, M., Risse, J.M., Gruß, H., Sewald, N., Eikmanns, B.J., Wendisch, V.F.: One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports. 8, : 12895 (2018).
Mindt, Melanie, Risse, Joe Max, Gruß, Hendrik, Sewald, Norbert, Eikmanns, Bernhard J., and Wendisch, Volker F. “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”. Scientific Reports 8.1 (2018): 12895.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s41598-018-31309-5.wendisch.pdf
1.75 MB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:00Z
MD5 Prüfsumme
93ed0b879b0c6702bd9f0b1cd1907d11
Daten bereitgestellt von European Bioinformatics Institute (EBI)
1 Zitation in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida.
Mindt M, Walter T, Risse JM, Wendisch VF., Front Bioeng Biotechnol 6(), 2018
PMID: 30474025
Mindt M, Walter T, Risse JM, Wendisch VF., Front Bioeng Biotechnol 6(), 2018
PMID: 30474025
87 References
Daten bereitgestellt von Europe PubMed Central.
Theanine, an amino-acid N-ethyl amide present in tea
Cartwright RA, Roberts EAH, Wood DJ., 1954
Cartwright RA, Roberts EAH, Wood DJ., 1954
Studies on the Chemical Constituents of Tea
Sakato Y., 1950
Sakato Y., 1950
N-methylation of peptides and proteins: an important element for modulating biological functions.
Chatterjee J, Rechenmacher F, Kessler H., Angew. Chem. Int. Ed. Engl. 52(1), 2012
PMID: 23161799
Chatterjee J, Rechenmacher F, Kessler H., Angew. Chem. Int. Ed. Engl. 52(1), 2012
PMID: 23161799
Comparison of the proteolytic susceptibilities of homologous l-amino acid, d-amino acid, and N-substituted glycine peptide and peptoid oligomers
Miller SM., 1995
Miller SM., 1995
"Libraries from libraries": chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity.
Ostresh JM, Husar GM, Blondelle SE, Dorner B, Weber PA, Houghten RA., Proc. Natl. Acad. Sci. U.S.A. 91(23), 1994
PMID: 7972024
Ostresh JM, Husar GM, Blondelle SE, Dorner B, Weber PA, Houghten RA., Proc. Natl. Acad. Sci. U.S.A. 91(23), 1994
PMID: 7972024
A new, long-lasting competitive inhibitor of angiotensin.
Turker RK, Hall MM, Yamamoto M, Sweet CS, Bumpus FM., Science 177(4055), 1972
PMID: 4341570
Turker RK, Hall MM, Yamamoto M, Sweet CS, Bumpus FM., Science 177(4055), 1972
PMID: 4341570
Conformational properties of secondary amino acids: replacement of pipecolic acid by N-methyl-l-alanine in efrapeptin C.
Dutt Konar A, Vass E, Hollosi M, Majer Z, Gruber G, Frese K, Sewald N., Chem. Biodivers. 10(5), 2013
PMID: 23681735
Dutt Konar A, Vass E, Hollosi M, Majer Z, Gruber G, Frese K, Sewald N., Chem. Biodivers. 10(5), 2013
PMID: 23681735
{gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris.
Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schafer H, Murrell JC., Appl. Environ. Microbiol. 76(13), 2010
PMID: 20472738
Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schafer H, Murrell JC., Appl. Environ. Microbiol. 76(13), 2010
PMID: 20472738
Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine.
Gruffaz C, Muller EE, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F., Appl. Environ. Microbiol. 80(11), 2014
PMID: 24682302
Gruffaz C, Muller EE, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F., Appl. Environ. Microbiol. 80(11), 2014
PMID: 24682302
Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5.
Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M, Schafer H, Kalyuzhnaya MG., Mol. Microbiol. 75(2), 2009
PMID: 19943898
Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M, Schafer H, Kalyuzhnaya MG., Mol. Microbiol. 75(2), 2009
PMID: 19943898
Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.
Nayak DD, Marx CJ., J. Bacteriol. 196(23), 2014
PMID: 25225269
Nayak DD, Marx CJ., J. Bacteriol. 196(23), 2014
PMID: 25225269
The enzymatic synthesis of N-methylalanine.
Kung HF, Wagner C., Biochim. Biophys. Acta 201(3), 1970
PMID: 4314464
Kung HF, Wagner C., Biochim. Biophys. Acta 201(3), 1970
PMID: 4314464
Purification and characterization of N-methylalanine dehydrogenase.
Lin MC, Wagner C., J. Biol. Chem. 250(10), 1975
PMID: 236301
Lin MC, Wagner C., J. Biol. Chem. 250(10), 1975
PMID: 236301
Imine reductases (IREDs).
Mangas-Sanchez J, France SP, Montgomery SL, Aleku GA, Man H, Sharma M, Ramsden JI, Grogan G, Turner NJ., Curr Opin Chem Biol 37(), 2016
PMID: 28038349
Mangas-Sanchez J, France SP, Montgomery SL, Aleku GA, Man H, Sharma M, Ramsden JI, Grogan G, Turner NJ., Curr Opin Chem Biol 37(), 2016
PMID: 28038349
Biocatalytic imine reduction and reductive amination of ketones
Schrittwieser JH, Velikogne S, Kroutil W., 2015
Schrittwieser JH, Velikogne S, Kroutil W., 2015
N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily.
Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N., FEBS J. 272(5), 2005
PMID: 15720386
Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N., FEBS J. 272(5), 2005
PMID: 15720386
Enzymatic synthesis of N-methyl-l-phenylalanine by a novel enzyme, N-methyl-l-amino acid dehydrogenase, from Pseudomonas putida
Muramatsu H., 2004
Muramatsu H., 2004
The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N., J. Biol. Chem. 280(7), 2004
PMID: 15561717
Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N., J. Biol. Chem. 280(7), 2004
PMID: 15561717
Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction.
Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K., J. Biol. Chem. 280(49), 2005
PMID: 16192274
Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K., J. Biol. Chem. 280(49), 2005
PMID: 16192274
Synthetic preparation of N-methyl-alpha-amino acids.
Aurelio L, Brownlee RT, Hughes AB., Chem. Rev. 104(12), 2004
PMID: 15584690
Aurelio L, Brownlee RT, Hughes AB., Chem. Rev. 104(12), 2004
PMID: 15584690
Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
Lee JH, Wendisch VF., J. Biotechnol. 257(), 2016
PMID: 27871872
Lee JH, Wendisch VF., J. Biotechnol. 257(), 2016
PMID: 27871872
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.
Becker J, Wittmann C., Angew. Chem. Int. Ed. Engl. 54(11), 2015
PMID: 25684732
Becker J, Wittmann C., Angew. Chem. Int. Ed. Engl. 54(11), 2015
PMID: 25684732
Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Heider SA, Wendisch VF., Biotechnol J 10(8), 2015
PMID: 26216246
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl. Microbiol. Biotechnol. 98(1), 2013
PMID: 24169948
Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl. Microbiol. Biotechnol. 98(1), 2013
PMID: 24169948
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl. Environ. Microbiol. 76(24), 2010
PMID: 20935122
Krause FS, Blombach B, Eikmanns BJ., Appl. Environ. Microbiol. 76(24), 2010
PMID: 20935122
Microbial Production of Amino Acid-Related Compounds.
Wendisch VF., Adv. Biochem. Eng. Biotechnol. 159(), 2017
PMID: 27872963
Wendisch VF., Adv. Biochem. Eng. Biotechnol. 159(), 2017
PMID: 27872963
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl. Microbiol. Biotechnol. 94(2), 2012
PMID: 22228312
Wieschalka S, Blombach B, Eikmanns BJ., Appl. Microbiol. Biotechnol. 94(2), 2012
PMID: 22228312
E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects.
Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ., J. Bacteriol. 187(17), 2005
PMID: 16109942
Schreiner ME, Fiur D, Holatko J, Patek M, Eikmanns BJ., J. Bacteriol. 187(17), 2005
PMID: 16109942
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects.
Schreiner ME, Riedel C, Holatko J, Patek M, Eikmanns BJ., J. Bacteriol. 188(4), 2006
PMID: 16452416
Schreiner ME, Riedel C, Holatko J, Patek M, Eikmanns BJ., J. Bacteriol. 188(4), 2006
PMID: 16452416
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148
A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.
Jorge JM, Leggewie C, Wendisch VF., Amino Acids 48(11), 2016
PMID: 27289384
Jorge JM, Leggewie C, Wendisch VF., Amino Acids 48(11), 2016
PMID: 27289384
AUTHOR UNKNOWN, 0
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.
Schneider J, Niermann K, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638422
Schneider J, Niermann K, Wendisch VF., J. Biotechnol. 154(2-3), 2010
PMID: 20638422
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.
Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z., Appl. Microbiol. Biotechnol. 99(4), 2014
PMID: 25434811
Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z., Appl. Microbiol. Biotechnol. 99(4), 2014
PMID: 25434811
Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose.
Jorge JM, Nguyen AQ, Perez-Garcia F, Kind S, Wendisch VF., Biotechnol. Bioeng. 114(4), 2016
PMID: 27800627
Jorge JM, Nguyen AQ, Perez-Garcia F, Kind S, Wendisch VF., Biotechnol. Bioeng. 114(4), 2016
PMID: 27800627
Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862
Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.
Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C., Microb. Cell Fact. 12(), 2013
PMID: 24228689
Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C., Microb. Cell Fact. 12(), 2013
PMID: 24228689
Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
Perez-Garcia F, Ziert C, Risse JM, Wendisch VF., J. Biotechnol. 258(), 2017
PMID: 28478080
Perez-Garcia F, Ziert C, Risse JM, Wendisch VF., J. Biotechnol. 258(), 2017
PMID: 28478080
Transport of branched-chain amino acids in Corynebacterium glutamicum.
Ebbighausen H, Weil B, Kramer R., Arch. Microbiol. 151(3), 1989
PMID: 2705860
Ebbighausen H, Weil B, Kramer R., Arch. Microbiol. 151(3), 1989
PMID: 2705860
Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family.
Kennerknecht N, Sahm H, Yen MR, Patek M, Saier Jr MH Jr, Eggeling L., J. Bacteriol. 184(14), 2002
PMID: 12081967
Kennerknecht N, Sahm H, Yen MR, Patek M, Saier Jr MH Jr, Eggeling L., J. Bacteriol. 184(14), 2002
PMID: 12081967
Characterization of methionine export in Corynebacterium glutamicum.
Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R., J. Bacteriol. 187(11), 2005
PMID: 15901702
Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R., J. Bacteriol. 187(11), 2005
PMID: 15901702
Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J. Biotechnol. 158(4), 2011
PMID: 21683740
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J. Biotechnol. 158(4), 2011
PMID: 21683740
Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues.
Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H., Angew. Chem. Int. Ed. Engl. 47(14), 2008
PMID: 18297660
Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H., Angew. Chem. Int. Ed. Engl. 47(14), 2008
PMID: 18297660
Evolutionary combinatorial chemistry, a novel tool for SAR studies on peptide transport across the blood-brain barrier. Part 2. Design, synthesis and evaluation of a first generation of peptides.
Teixido M, Belda I, Zurita E, Llora X, Fabre M, Vilaro S, Albericio F, Giralt E., J. Pept. Sci. 11(12), 2005
PMID: 15942930
Teixido M, Belda I, Zurita E, Llora X, Fabre M, Vilaro S, Albericio F, Giralt E., J. Pept. Sci. 11(12), 2005
PMID: 15942930
A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum.
Vrljic M, Sahm H, Eggeling L., Mol. Microbiol. 22(5), 1996
PMID: 8971704
Vrljic M, Sahm H, Eggeling L., Mol. Microbiol. 22(5), 1996
PMID: 8971704
Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB.
Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A., Microbiology (Reading, Engl.) 147(Pt 1), 2001
PMID: 11160807
Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A., Microbiology (Reading, Engl.) 147(Pt 1), 2001
PMID: 11160807
Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum.
Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R., J. Biol. Chem. 271(10), 1996
PMID: 8621394
Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R., J. Biol. Chem. 271(10), 1996
PMID: 8621394
Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein.
Soupene E, He L, Yan D, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 95(12), 1998
PMID: 9618533
Soupene E, He L, Yan D, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 95(12), 1998
PMID: 9618533
AUTHOR UNKNOWN, 0
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Synthetic promoter libraries for Corynebacterium glutamicum.
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR., Appl. Microbiol. Biotechnol. 98(6), 2014
PMID: 24458563
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR., Appl. Microbiol. Biotechnol. 98(6), 2014
PMID: 24458563
Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum.
Yim SS, An SJ, Kang M, Lee J, Jeong KJ., Biotechnol. Bioeng. 110(11), 2013
PMID: 23633298
Yim SS, An SJ, Kang M, Lee J, Jeong KJ., Biotechnol. Bioeng. 110(11), 2013
PMID: 23633298
A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
Gand M, Thole C, Muller H, Brundiek H, Bashiri G, Hohne M., J. Biotechnol. 230(), 2016
PMID: 27164259
Gand M, Thole C, Muller H, Brundiek H, Bashiri G, Hohne M., J. Biotechnol. 230(), 2016
PMID: 27164259
InspIRED by Nature: NADPH-dependent imine reductases (IREDs) as catalysts for the preparation of chiral amines
Grogan G, Turner NJ., 2016
Grogan G, Turner NJ., 2016
Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
Maugeri Z, Rother D., J. Biotechnol. 258(), 2017
PMID: 28545904
Maugeri Z, Rother D., J. Biotechnol. 258(), 2017
PMID: 28545904
Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae.
Matzel P, Krautschick L, Hohne M., Chembiochem 18(20), 2017
PMID: 28833946
Matzel P, Krautschick L, Hohne M., Chembiochem 18(20), 2017
PMID: 28833946
Direct reductive amination of ketones: Structure and activity of S -selective imine reductases from Streptomyces
Huber T., 2014
Huber T., 2014
Imine reductase-catalyzed intermolecular reductive amination of aldehydes and ketones
Scheller PN, Lenz M, Hammer SC, Hauer B, Nestl BM., 2015
Scheller PN, Lenz M, Hammer SC, Hauer B, Nestl BM., 2015
P450(BM3) (CYP102A1): connecting the dots.
Whitehouse CJ, Bell SG, Wong LL., Chem Soc Rev 41(3), 2011
PMID: 22008827
Whitehouse CJ, Bell SG, Wong LL., Chem Soc Rev 41(3), 2011
PMID: 22008827
Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions.
Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA., Arch. Biochem. Biophys. 292(1), 1992
PMID: 1727637
Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA., Arch. Biochem. Biophys. 292(1), 1992
PMID: 1727637
Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation
Farinas ET, Schwaneberg U, Glieder A, Arnold FH., 2001
Farinas ET, Schwaneberg U, Glieder A, Arnold FH., 2001
Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
Peters MW, Meinhold P, Glieder A, Arnold FH., J. Am. Chem. Soc. 125(44), 2003
PMID: 14583039
Peters MW, Meinhold P, Glieder A, Arnold FH., J. Am. Chem. Soc. 125(44), 2003
PMID: 14583039
Studies on the enantioselective oxidation of β-ionone with a whole E. coli system expressing cytochrome P450 monooxygenase BM3
Zehentgruber D, Urlacher VB, Lütz S., 2012
Zehentgruber D, Urlacher VB, Lütz S., 2012
Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst.
Li QS, Schwaneberg U, Fischer P, Schmid RD., Chemistry 6(9), 2000
PMID: 10839169
Li QS, Schwaneberg U, Fischer P, Schmid RD., Chemistry 6(9), 2000
PMID: 10839169
Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst.
Li HM, Mei LH, Urlacher VB, Schmid RD., Appl. Biochem. Biotechnol. 144(1), 2008
PMID: 18415984
Li HM, Mei LH, Urlacher VB, Schmid RD., Appl. Biochem. Biotechnol. 144(1), 2008
PMID: 18415984
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
AUTHOR UNKNOWN, 0
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Bradford MM., Anal. Biochem. 72(), 1976
PMID: 942051
Bradford MM., Anal. Biochem. 72(), 1976
PMID: 942051
Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.
Schneider J, Eberhardt D, Wendisch VF., Appl. Microbiol. Biotechnol. 95(1), 2012
PMID: 22370950
Schneider J, Eberhardt D, Wendisch VF., Appl. Microbiol. Biotechnol. 95(1), 2012
PMID: 22370950
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays.
Wendisch VF., J. Biotechnol. 104(1-3), 2003
PMID: 12948645
Wendisch VF., J. Biotechnol. 104(1-3), 2003
PMID: 12948645
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum.
Kirchner O, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948646
Kirchner O, Tauch A., J. Biotechnol. 104(1-3), 2003
PMID: 12948646
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30150644
PubMed | Europe PMC
Suchen in