One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst

Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF (2018)
Scientific Reports 8(1): 12895.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.75 MB
Abstract / Bemerkung
N-methylated amino acids are found in Nature in various biological compounds. N-methylation of amino acids has been shown to improve pharmacokinetic properties of peptide drugs due to conformational changes, improved proteolytic stability and/or higher lipophilicity. Due to these characteristics N-methylated amino acids received increasing interest by the pharmaceutical industry. Syntheses of N-methylated amino acids by chemical and biocatalytic approaches are known, but often show incomplete stereoselectivity, low yields or expensive co-factor regeneration. So far a one-step fermentative process from sugars has not yet been described. Here, a one-step conversion of sugars and methylamine to the N-methylated amino acid N-methyl-l-alanine was developed. A whole-cell biocatalyst was derived from a pyruvate overproducing C. glutamicum strain by heterologous expression of the N-methyl-l-amino acid dehydrogenase gene from Pseudomonas putida. As proof-of-concept, N-methyl-l-alanine titers of 31.7 g L−1 with a yield of 0.71 g per g glucose were achieved in fed-batch cultivation. The C. glutamicum strain producing this imine reductase enzyme was engineered further to extend this green chemistry route to production of N-methyl-l-alanine from alternative feed stocks such as starch or the lignocellulosic sugars xylose and arabinose.
Erscheinungsjahr
2018
Zeitschriftentitel
Scientific Reports
Band
8
Ausgabe
1
Art.-Nr.
12895
ISSN
2045-2322
eISSN
2045-2322
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2930292

Zitieren

Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports. 2018;8(1): 12895.
Mindt, M., Risse, J. M., Gruß, H., Sewald, N., Eikmanns, B. J., & Wendisch, V. F. (2018). One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports, 8(1), 12895. doi:10.1038/s41598-018-31309-5
Mindt, Melanie, Risse, Joe Max, Gruß, Hendrik, Sewald, Norbert, Eikmanns, Bernhard J., and Wendisch, Volker F. 2018. “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”. Scientific Reports 8 (1): 12895.
Mindt, M., Risse, J. M., Gruß, H., Sewald, N., Eikmanns, B. J., and Wendisch, V. F. (2018). One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports 8:12895.
Mindt, M., et al., 2018. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports, 8(1): 12895.
M. Mindt, et al., “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”, Scientific Reports, vol. 8, 2018, : 12895.
Mindt, M., Risse, J.M., Gruß, H., Sewald, N., Eikmanns, B.J., Wendisch, V.F.: One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports. 8, : 12895 (2018).
Mindt, Melanie, Risse, Joe Max, Gruß, Hendrik, Sewald, Norbert, Eikmanns, Bernhard J., and Wendisch, Volker F. “One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst”. Scientific Reports 8.1 (2018): 12895.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:00Z
MD5 Prüfsumme
93ed0b879b0c6702bd9f0b1cd1907d11


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida.
Mindt M, Walter T, Risse JM, Wendisch VF., Front Bioeng Biotechnol 6(), 2018
PMID: 30474025

87 References

Daten bereitgestellt von Europe PubMed Central.

Theanine, an amino-acid N-ethyl amide present in tea
Cartwright RA, Roberts EAH, Wood DJ., 1954
Studies on the Chemical Constituents of Tea
Sakato Y., 1950
N-methylation of peptides and proteins: an important element for modulating biological functions.
Chatterjee J, Rechenmacher F, Kessler H., Angew. Chem. Int. Ed. Engl. 52(1), 2012
PMID: 23161799
Comparison of the proteolytic susceptibilities of homologous l-amino acid, d-amino acid, and N-substituted glycine peptide and peptoid oligomers
Miller SM., 1995
"Libraries from libraries": chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity.
Ostresh JM, Husar GM, Blondelle SE, Dorner B, Weber PA, Houghten RA., Proc. Natl. Acad. Sci. U.S.A. 91(23), 1994
PMID: 7972024
A new, long-lasting competitive inhibitor of angiotensin.
Turker RK, Hall MM, Yamamoto M, Sweet CS, Bumpus FM., Science 177(4055), 1972
PMID: 4341570
Conformational properties of secondary amino acids: replacement of pipecolic acid by N-methyl-l-alanine in efrapeptin C.
Dutt Konar A, Vass E, Hollosi M, Majer Z, Gruber G, Frese K, Sewald N., Chem. Biodivers. 10(5), 2013
PMID: 23681735
{gamma}-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris.
Chen Y, Scanlan J, Song L, Crombie A, Rahman MT, Schafer H, Murrell JC., Appl. Environ. Microbiol. 76(13), 2010
PMID: 20472738
Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine.
Gruffaz C, Muller EE, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F., Appl. Environ. Microbiol. 80(11), 2014
PMID: 24682302
Genetics of the glutamate-mediated methylamine utilization pathway in the facultative methylotrophic beta-proteobacterium Methyloversatilis universalis FAM5.
Latypova E, Yang S, Wang YS, Wang T, Chavkin TA, Hackett M, Schafer H, Kalyuzhnaya MG., Mol. Microbiol. 75(2), 2009
PMID: 19943898
The enzymatic synthesis of N-methylalanine.
Kung HF, Wagner C., Biochim. Biophys. Acta 201(3), 1970
PMID: 4314464
Purification and characterization of N-methylalanine dehydrogenase.
Lin MC, Wagner C., J. Biol. Chem. 250(10), 1975
PMID: 236301
Imine reductases (IREDs).
Mangas-Sanchez J, France SP, Montgomery SL, Aleku GA, Man H, Sharma M, Ramsden JI, Grogan G, Turner NJ., Curr Opin Chem Biol 37(), 2016
PMID: 28038349
Biocatalytic imine reduction and reductive amination of ketones
Schrittwieser JH, Velikogne S, Kroutil W., 2015
N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily.
Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N., FEBS J. 272(5), 2005
PMID: 15720386
Enzymatic synthesis of N-methyl-l-phenylalanine by a novel enzyme, N-methyl-l-amino acid dehydrogenase, from Pseudomonas putida
Muramatsu H., 2004
Synthetic preparation of N-methyl-alpha-amino acids.
Aurelio L, Brownlee RT, Hughes AB., Chem. Rev. 104(12), 2004
PMID: 15584690

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ., Appl. Microbiol. Biotechnol. 98(1), 2013
PMID: 24169948
Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production.
Krause FS, Blombach B, Eikmanns BJ., Appl. Environ. Microbiol. 76(24), 2010
PMID: 20935122
Microbial Production of Amino Acid-Related Compounds.
Wendisch VF., Adv. Biochem. Eng. Biotechnol. 159(), 2017
PMID: 27872963
Engineering Corynebacterium glutamicum for the production of pyruvate.
Wieschalka S, Blombach B, Eikmanns BJ., Appl. Microbiol. Biotechnol. 94(2), 2012
PMID: 22228312
L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ., Appl. Environ. Microbiol. 73(7), 2007
PMID: 17293513
Corynebacterium glutamicum tailored for efficient isobutanol production.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ., Appl. Environ. Microbiol. 77(10), 2011
PMID: 21441331
Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum.
Blombach B, Hans S, Bathe B, Eikmanns BJ., Appl. Environ. Microbiol. 75(2), 2008
PMID: 19047397
Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.
Marienhagen J, Kennerknecht N, Sahm H, Eggeling L., J. Bacteriol. 187(22), 2005
PMID: 16267288
Bio-based production of organic acids with Corynebacterium glutamicum.
Wieschalka S, Blombach B, Bott M, Eikmanns BJ., Microb Biotechnol 6(2), 2012
PMID: 23199277
Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum.
Jensen JV, Wendisch VF., Microb. Cell Fact. 12(), 2013
PMID: 23806148

AUTHOR UNKNOWN, 0
Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ., J. Biotechnol. 124(2), 2006
PMID: 16488498
Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Microbiol. Biotechnol. 77(5), 2007
PMID: 17965859
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2012
PMID: 23164409
L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.
Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z., Appl. Microbiol. Biotechnol. 99(4), 2014
PMID: 25434811
Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate.
Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J., Microb. Cell Fact. 15(1), 2016
PMID: 27618862
Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine.
Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, Bremer E, Wittmann C., Microb. Cell Fact. 12(), 2013
PMID: 24228689
Transport of branched-chain amino acids in Corynebacterium glutamicum.
Ebbighausen H, Weil B, Kramer R., Arch. Microbiol. 151(3), 1989
PMID: 2705860
Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family.
Kennerknecht N, Sahm H, Yen MR, Patek M, Saier Jr MH Jr, Eggeling L., J. Bacteriol. 184(14), 2002
PMID: 12081967
Characterization of methionine export in Corynebacterium glutamicum.
Trotschel C, Deutenberg D, Bathe B, Burkovski A, Kramer R., J. Bacteriol. 187(11), 2005
PMID: 15901702
Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids.
Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF., J. Biotechnol. 158(4), 2011
PMID: 21683740
Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues.
Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H., Angew. Chem. Int. Ed. Engl. 47(14), 2008
PMID: 18297660
Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB.
Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A., Microbiology (Reading, Engl.) 147(Pt 1), 2001
PMID: 11160807
Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum.
Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Kramer R., J. Biol. Chem. 271(10), 1996
PMID: 8621394
Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein.
Soupene E, He L, Yan D, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 95(12), 1998
PMID: 9618533

AUTHOR UNKNOWN, 0
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Synthetic promoter libraries for Corynebacterium glutamicum.
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR., Appl. Microbiol. Biotechnol. 98(6), 2014
PMID: 24458563
Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum.
Yim SS, An SJ, Kang M, Lee J, Jeong KJ., Biotechnol. Bioeng. 110(11), 2013
PMID: 23633298
A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
Gand M, Thole C, Muller H, Brundiek H, Bashiri G, Hohne M., J. Biotechnol. 230(), 2016
PMID: 27164259
InspIRED by Nature: NADPH-dependent imine reductases (IREDs) as catalysts for the preparation of chiral amines
Grogan G, Turner NJ., 2016
Direct reductive amination of ketones: Structure and activity of S -selective imine reductases from Streptomyces
Huber T., 2014
Imine reductase-catalyzed intermolecular reductive amination of aldehydes and ketones
Scheller PN, Lenz M, Hammer SC, Hauer B, Nestl BM., 2015
P450(BM3) (CYP102A1): connecting the dots.
Whitehouse CJ, Bell SG, Wong LL., Chem Soc Rev 41(3), 2011
PMID: 22008827
Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions.
Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA., Arch. Biochem. Biophys. 292(1), 1992
PMID: 1727637
Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation
Farinas ET, Schwaneberg U, Glieder A, Arnold FH., 2001
Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
Peters MW, Meinhold P, Glieder A, Arnold FH., J. Am. Chem. Soc. 125(44), 2003
PMID: 14583039
Studies on the enantioselective oxidation of β-ionone with a whole E. coli system expressing cytochrome P450 monooxygenase BM3
Zehentgruber D, Urlacher VB, Lütz S., 2012
Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst.
Li QS, Schwaneberg U, Fischer P, Schmid RD., Chemistry 6(9), 2000
PMID: 10839169
Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst.
Li HM, Mei LH, Urlacher VB, Schmid RD., Appl. Biochem. Biotechnol. 144(1), 2008
PMID: 18415984
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791

AUTHOR UNKNOWN, 0
Enzymatic assembly of DNA molecules up to several hundred kilobases.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO., Nat. Methods 6(5), 2009
PMID: 19363495
Putrescine production by engineered Corynebacterium glutamicum.
Schneider J, Wendisch VF., Appl. Microbiol. Biotechnol. 88(4), 2010
PMID: 20661733
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30150644
PubMed | Europe PMC

Suchen in

Google Scholar