Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell

Biere N, Ghaffar M, Doebbe A, Jaeger D, Rothe N, Friedrich BM, Hofestädt R, Schreiber F, Kruse O, Sommer B (2018)
Journal of Integrative Bioinformatics 15(2): 20180003.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 10.94 MB
Biere, NiklasUniBi; Ghaffar, Mehmood; Doebbe, AnjaUniBi; Jaeger, DanielUniBi; Rothe, Nils; Friedrich, Benjamin M.; Hofestädt, RalfUniBi; Schreiber, Falk; Kruse, OlafUniBi ; Sommer, Bjoern
Abstract / Bemerkung
The structural modeling and representation of cells is a complex task as different microscopic, spectroscopic and other information resources have to be combined to achieve a three-dimensional representation with high accuracy. Moreover, to provide an appropriate spatial representation of the cell, a stereoscopic 3D (S3D) visualization is favorable. In this work, a structural cell model is created by combining information from various light microscopic and electron microscopic images as well as from publication-related data. At the mesoscopic level each cell component is presented with special structural and visual properties; at the molecular level a cell membrane composition and the underlying modeling method are discussed; and structural information is correlated with those at the functional level (represented by simplified energy-producing metabolic pathways). The organism used as an example is the unicellular Chlamydomonas reinhardtii, which might be important in future alternative energy production processes. Based on the 3D model, an educative S3D animation was created which was shown at conferences. The complete workflow was accomplished by using the open source 3D modeling software Blender.
Cell Modeling and Visualization; Microscopic Imaging; Computational; Biology
Journal of Integrative Bioinformatics
Page URI


Biere N, Ghaffar M, Doebbe A, et al. Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. Journal of Integrative Bioinformatics. 2018;15(2): 20180003.
Biere, N., Ghaffar, M., Doebbe, A., Jaeger, D., Rothe, N., Friedrich, B. M., Hofestädt, R., et al. (2018). Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. Journal of Integrative Bioinformatics, 15(2), 20180003. https://doi.org/10.1515/jib-2018-0003
Biere, N., Ghaffar, M., Doebbe, A., Jaeger, D., Rothe, N., Friedrich, B. M., Hofestädt, R., Schreiber, F., Kruse, O., and Sommer, B. (2018). Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. Journal of Integrative Bioinformatics 15:20180003.
Biere, N., et al., 2018. Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. Journal of Integrative Bioinformatics, 15(2): 20180003.
N. Biere, et al., “Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell”, Journal of Integrative Bioinformatics, vol. 15, 2018, : 20180003.
Biere, N., Ghaffar, M., Doebbe, A., Jaeger, D., Rothe, N., Friedrich, B.M., Hofestädt, R., Schreiber, F., Kruse, O., Sommer, B.: Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell. Journal of Integrative Bioinformatics. 15, : 20180003 (2018).
Biere, Niklas, Ghaffar, Mehmood, Doebbe, Anja, Jaeger, Daniel, Rothe, Nils, Friedrich, Benjamin M., Hofestädt, Ralf, Schreiber, Falk, Kruse, Olaf, and Sommer, Bjoern. “Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell”. Journal of Integrative Bioinformatics 15.2 (2018): 20180003.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

72 References

Daten bereitgestellt von Europe PubMed Central.

Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung
AUTHOR UNKNOWN, Arch Mikrosk Anat 9(), 1873
Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements.
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G., Plant Cell 18(8), 2006
PMID: 16798888
Toward fluorescence nanoscopy.
Hell SW., Nat. Biotechnol. 21(11), 2003
PMID: 14595362

AUTHOR UNKNOWN, Visualization of molecular properties at the qantum mechanical level using blender (), 2015

AUTHOR UNKNOWN, Blender for dummies (), 2015
ePMV embeds molecular modeling into professional animation software environments.
Johnson GT, Autin L, Goodsell DS, Sanner MF, Olson AJ., Structure 19(3), 2011
PMID: 21397181
E-Cell 2: multi-platform E-Cell simulation system.
Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M., Bioinformatics 19(13), 2003
PMID: 15593410
The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content
AUTHOR UNKNOWN, J Cell Sci 111(), 1998

AUTHOR UNKNOWN, Stereoscopic rendering in Blender 2.6 (), 2013
Network anatomy and in vivo physiology of visual cortical neurons.
Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC., Nature 471(7337), 2011
PMID: 21390124
Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta)
AUTHOR UNKNOWN, Biologia 63(), 2008
Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast.
Egner A, Jakobs S, Hell SW., Proc. Natl. Acad. Sci. U.S.A. 99(6), 2002
PMID: 11904401
In situ structural analysis of Golgi intracisternal protein arrays.
Engel BD, Schaffer M, Albert S, Asano S, Plitzko JM, Baumeister W., Proc. Natl. Acad. Sci. U.S.A. 112(36), 2015
PMID: 26311849
Bidirectional Scattering Distribution Function (BSDF): A Systematized Bibliography.
Asmail C., J Res Natl Inst Stand Technol 96(2), 1991
PMID: 28184111

AUTHOR UNKNOWN, UnityMol: interactive scientific visualization for integrative biology (), 2014
CompuCell, a multi-model framework for simulation of morphogenesis.
Izaguirre JA, Chaturvedi R, Huang C, Cickovski T, Coffland J, Thomas G, Forgacs G, Alber M, Hentschel G, Newman SA, Glazier JA., Bioinformatics 20(7), 2004
PMID: 14764549
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
Subcellular localization charts: a new visual methodology for the semi-automatic localization of protein-related data sets.
Sommer B, Kormeier B, Demenkov PS, Arrigo P, Hippe K, Ates O, Kochetov AV, Ivanisenko VA, Kolchanov NA, Hofestadt R., J Bioinform Comput Biol 11(1), 2013
PMID: 23427987
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
Hess B, Kutzner C, van der Spoel D, Lindahl E., J Chem Theory Comput 4(3), 2008
PMID: 26620784
MegaMol--A Prototyping Framework for Particle-Based Visualization.
Grottel S, Krone M, Muller C, Reina G, Ertl T., IEEE Trans Vis Comput Graph 21(2), 2015
PMID: 26357030

AUTHOR UNKNOWN, How are crosstalk and ghosting defined in the stereoscopic literature? (), 2011

Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography
AUTHOR UNKNOWN, Elife 4(), 2015
High-speed cinematographic analysis of the movement of Chlamydomonas
AUTHOR UNKNOWN, Cell Motil 5(), 1985


A cell-centered database for electron tomographic data.
Martone ME, Gupta A, Wong M, Qian X, Sosinsky G, Ludascher B, Ellisman MH., J. Struct. Biol. 138(1-2), 2002
PMID: 12160711
Size changes in eukaryotic ribosomes.
Vournakis J, Rich A., Proc. Natl. Acad. Sci. U.S.A. 68(12), 1971
PMID: 5289247
Biomedical illustration: From monsters to molecules.
Lok C., Nature 477(7364), 2011
PMID: 21928542

AUTHOR UNKNOWN, CELLmicrocosmos.org forum – Stereoscopic Camera Plugin for Blender 2.6X to 2.7X (), 2015
Stereoscopic cell visualization: From mesoscopic to molecular scale
AUTHOR UNKNOWN, J Electron Imaging 23(), 2014
TrakEM2 software for neural circuit reconstruction.
Cardona A, Saalfeld S, Schindelin J, Arganda-Carreras I, Preibisch S, Longair M, Tomancak P, Hartenstein V, Douglas RJ., PLoS ONE 7(6), 2012
PMID: 22723842
CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous Membrane Packing Problems
AUTHOR UNKNOWN, J Chem Inf Model 5(), 2011
Inside a living cell.
Goodsell DS., Trends Biochem. Sci. 16(6), 1991
PMID: 1891800

Instant Construction and Visualization of Crowded Biological Environments.
Klein T, Autin L, Kozlikova B, Goodsell DS, Olson A, Groller ME, Viola I., IEEE Trans Vis Comput Graph 24(1), 2017
PMID: 28866533

AUTHOR UNKNOWN, The Hungry Microbiome: a biomedical animation (VizBi2014 Poster) [Poster] (), 2014
Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms.
Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M., Annu Rev Plant Biol 58(), 2007
PMID: 17150028

Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization.
Mittelmeier TM, Boyd JS, Lamb MR, Dieckmann CL., J. Cell Biol. 193(4), 2011
PMID: 21555459
Molecular movies... coming to a lecture near you.
McGill G., Cell 133(7), 2008
PMID: 18585343
Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
Geyer VF, Julicher F, Howard J, Friedrich BM., Proc. Natl. Acad. Sci. U.S.A. 110(45), 2013
PMID: 24145440
Isolation of chloroplast envelopes from Chlamydomonas
AUTHOR UNKNOWN, Lipid and polypeptide composition. Plant Sci 41(), 1985

AUTHOR UNKNOWN, The virtual worm: 3D renderings of Caenorhabditis elegans (VizBi2010 Poster) [Poster] (), 2010
Intuitive representation of surface properties of biomolecules using BioBlender.
Andrei RM, Callieri M, Zini MF, Loni T, Maraziti G, Pan MC, Zoppe M., BMC Bioinformatics 13 Suppl 4(), 2012
PMID: 22536962


AUTHOR UNKNOWN, In review (), 2018

3D Ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography.
Hummel E, Guttmann P, Werner S, Tarek B, Schneider G, Kunz M, Frangakis AS, Westermann B., PLoS ONE 7(12), 2012
PMID: 23300909

OPM database and PPM web server: resources for positioning of proteins in membranes.
Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL., Nucleic Acids Res. 40(Database issue), 2011
PMID: 21890895
Atomic force microscope.
Binnig G, Quate CF, Gerber C., Phys. Rev. Lett. 56(9), 1986
PMID: 10033323
Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang JC, Baden SB, Sejnowski TJ, Stiles JR., SIAM J Sci Comput 30(6), 2008
PMID: 20151023
Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation.
Eitzinger N, Wagner V, Weisheit W, Geimer S, Boness D, Kreimer G, Mittag M., Front Plant Sci 6(), 2015
PMID: 26697039
The Virtual Cell: a software environment for computational cell biology.
Loew LM, Schaff JC., Trends Biotechnol. 19(10), 2001
PMID: 11587765

High-throughput phenotyping of chlamydomonas swimming mutants based on nanoscale video analysis.
Fujita S, Matsuo T, Ishiura M, Kikkawa M., Biophys. J. 107(2), 2014
PMID: 25028875

AUTHOR UNKNOWN, Blender 3D: Noob to Pro/Fireflies in Cycles, Continued – Wikibooks, open books for an open world (), 2014
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov ML, Schaff JC, Vasilescu D, Moraru II, Bloom JE, Loew LM., Biophys. J. 113(7), 2017
PMID: 28978431
cellPACK: a virtual mesoscope to model and visualize structural systems biology.
Johnson GT, Autin L, Al-Alusi M, Goodsell DS, Sanner MF, Olson AJ., Nat. Methods 12(1), 2014
PMID: 25437435
Imaging of atomic orbitals with the Atomic Force Microscope — experiments and simulations
AUTHOR UNKNOWN, Ann Phys 10(), 2001
The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii.
Goodenough U, Blaby I, Casero D, Gallaher SD, Goodson C, Johnson S, Lee JH, Merchant SS, Pellegrini M, Roth R, Rusch J, Singh M, Umen JG, Weiss TL, Wulan T., Eukaryotic Cell 13(5), 2014
PMID: 24585881


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 30001212
PubMed | Europe PMC

Suchen in

Google Scholar