Fermi resonance controlled product branching in the H plus HOD reaction

Zhao B, Manthe U, Guo H (2018)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20(25): 17029-17037.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
Accurate full-dimensional quantum state-to-state reaction probabilities and integral cross sections are calculated for the title reaction. Product vibrational state distributions are studied for the HOD reactant in various vibrational states. The correlation of initial reactant vibrational excitation with product channel branching and product vibrational state distribution is analyzed in detail. In particular, the effect of bending vibrational excitation on the reactivity is studied. While results for the HOD reactant in the fundamentally excited bending vibrational state confirm intuitive expectation with minor enhancement for both product channels, a surprising effect is found for HOD in the first overtone of bending vibration. Here, the reactivity towards breaking the OD bond is significantly enhanced. This finding can be explained by the state-mixing caused by a 1:2 Fermi resonance between the fundamental OD stretch and the first overtone of the bend. The results highlight the importance of a proper analysis of the initial vibrational state.
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Band
20
Ausgabe
25
Seite(n)
17029-17037
ISSN
eISSN
PUB-ID

Zitieren

Zhao B, Manthe U, Guo H. Fermi resonance controlled product branching in the H plus HOD reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2018;20(25):17029-17037.
Zhao, B., Manthe, U., & Guo, H. (2018). Fermi resonance controlled product branching in the H plus HOD reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(25), 17029-17037. doi:10.1039/c8cp02279h
Zhao, B., Manthe, U., and Guo, H. (2018). Fermi resonance controlled product branching in the H plus HOD reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20, 17029-17037.
Zhao, B., Manthe, U., & Guo, H., 2018. Fermi resonance controlled product branching in the H plus HOD reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(25), p 17029-17037.
B. Zhao, U. Manthe, and H. Guo, “Fermi resonance controlled product branching in the H plus HOD reaction”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 20, 2018, pp. 17029-17037.
Zhao, B., Manthe, U., Guo, H.: Fermi resonance controlled product branching in the H plus HOD reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 20, 17029-17037 (2018).
Zhao, Bin, Manthe, Uwe, and Guo, Hua. “Fermi resonance controlled product branching in the H plus HOD reaction”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20.25 (2018): 17029-17037.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

69 References

Daten bereitgestellt von Europe PubMed Central.

Laser control of chemical reactions
Zare RN., Science 279(5358), 1998
PMID: 9506928

Crim, Acc. Chem. Res. 32(), 1999
Recent Advances in Quantum Dynamics of Bimolecular Reactions.
Zhang DH, Guo H., Annu Rev Phys Chem 67(), 2016
PMID: 26980305

Zhao, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7(), 2017
From ab initio potential energy surfaces to state-resolved reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O((3)P)] reactions.
Li J, Jiang B, Song H, Ma J, Zhao B, Dawes R, Guo H., J Phys Chem A 119(20), 2015
PMID: 25886142
Recent advances in quantum scattering calculations on polyatomic bimolecular reactions.
Fu B, Shan X, Zhang DH, Clary DC., Chem Soc Rev 46(24), 2017
PMID: 29143835

Sinha, J. Chem. Phys. 92(), 1990

Sinha, J. Chem. Phys. 94(), 1991

Metz, J. Chem. Phys. 99(), 1993

Bronikowski, J. Chem. Phys. 95(), 1991

Bronikowski, J. Phys. Chem. 97(), 1993

Sinha, J. Chem. Phys. 96(), 1992

Bronikowski, J. Phys. Chem. 97(), 1993

Smith, Phys. Chem. Chem. Phys. 4(), 2002
Mode-specific energy disposal in the four-atom reaction OH + D2 --> HOD + D.
Strazisar BR, Lin C, Davis HF., Science 290(5493), 2000
PMID: 11062122
The dynamics of the D2 + OH --> HOD + D reaction: a combined theoretical and experimental study.
Liu S, Xiao C, Wang T, Chen J, Yang T, Xu X, Zhang DH, Yang X., Faraday Discuss. 157(), 2012
PMID: 23230766
Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H₂O + D.
Xiao C, Xu X, Liu S, Wang T, Dong W, Yang T, Sun Z, Dai D, Xu X, Zhang DH, Yang X., Science 333(6041), 2011
PMID: 21778397

Matzkies, J. Chem. Phys. 108(), 1998

Manthe, J. Chem. Phys. 101(), 1994

Manthe, J. Chem. Phys. 99(), 1993

Manthe, J. Chem. Phys. 113(), 2000

Neuhauser, J. Chem. Phys. 100(), 1994

Dai, J. Phys. Chem. 100(), 1996

Zhu, J. Chem. Phys. 105(), 1996

Zhang, J. Chem. Phys. 104(), 1996

Zhang, J. Chem. Phys. 105(), 1996

Zhang, J. Chem. Soc., Faraday Trans. 93(), 1997
First-principles theory for the H + H2O, D2O reactions.
Zhang DH, Collins MA, Lee SY., Science 290(5493), 2000
PMID: 11062123

Zhang, J. Chem. Phys. 114(), 2001
Breakdown of the spectator model for the OH bonds in studying the H+H2O reaction.
Zhang DH, Yang M, Lee SY., Phys. Rev. Lett. 89(10), 2002
PMID: 12225190

Goldfield, J. Chem. Phys. 117(), 2002

Defazio, J. Phys. Chem. A 107(), 2003

Mayneris, Comput. Phys. Commun. 179(), 2008

Kudla, Chem. Phys. Lett. 193(), 1992

Bowman, J. Chem. Phys. 96(), 1992

Wang, J. Chem. Phys. 98(), 1993

Nyman, J. Chem. Phys. 99(), 1993
Some concepts in reaction dynamics.
Polanyi JC., Science 236(4802), 1987
PMID: 17748308

Guo, Chem. Sci. 7(), 2016

Jiang, J. Chin. Chem. Soc. 61(), 2014

Feit, J. Comput. Phys. 47(), 1982

Reimers, Mol. Phys. 52(), 1984

Benedict, J. Chem. Phys. 24(), 1956

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29911229
PubMed | Europe PMC

Suchen in

Google Scholar