Dynamical Typicality Approach to Eigenstate Thermalization

Reimann P (2018)
PHYSICAL REVIEW LETTERS 120(23): 6.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We consider the set of all initial states within a microcanonical energy shell of an isolated many-body quantum system, which exhibit an arbitrary but fixed nonequilibrium expectation value for some given observable A. On the condition that this set is not too small, it is shown by means of a dynamical typicality approach that most such initial states exhibit thermalization if and only if A satisfies the so-called weak eigenstate thermalization hypothesis (wETH). Here, thermalization means that the expectation value of A spends most of its time close to the microcanonical value after initial transients have died out. The wETH means that, within the energy shell, most eigenstates of the pertinent system Hamiltonian exhibit very similar expectation values of A.
Erscheinungsjahr
2018
Zeitschriftentitel
PHYSICAL REVIEW LETTERS
Band
120
Ausgabe
23
Art.-Nr.
6
ISSN
0031-9007
eISSN
1079-7114
Page URI
https://pub.uni-bielefeld.de/record/2920946

Zitieren

Reimann P. Dynamical Typicality Approach to Eigenstate Thermalization. PHYSICAL REVIEW LETTERS. 2018;120(23): 6.
Reimann, P. (2018). Dynamical Typicality Approach to Eigenstate Thermalization. PHYSICAL REVIEW LETTERS, 120(23), 6. doi:10.1103/PhysRevLett.120.230601
Reimann, Peter. 2018. “Dynamical Typicality Approach to Eigenstate Thermalization”. PHYSICAL REVIEW LETTERS 120 (23): 6.
Reimann, P. (2018). Dynamical Typicality Approach to Eigenstate Thermalization. PHYSICAL REVIEW LETTERS 120:6.
Reimann, P., 2018. Dynamical Typicality Approach to Eigenstate Thermalization. PHYSICAL REVIEW LETTERS, 120(23): 6.
P. Reimann, “Dynamical Typicality Approach to Eigenstate Thermalization”, PHYSICAL REVIEW LETTERS, vol. 120, 2018, : 6.
Reimann, P.: Dynamical Typicality Approach to Eigenstate Thermalization. PHYSICAL REVIEW LETTERS. 120, : 6 (2018).
Reimann, Peter. “Dynamical Typicality Approach to Eigenstate Thermalization”. PHYSICAL REVIEW LETTERS 120.23 (2018): 6.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

40 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Quantum statistical mechanics in a closed system.
Deutsch JM., Phys. Rev., A 43(4), 1991
PMID: 9905246
Chaos and quantum thermalization.
Srednicki M., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 50(2), 1994
PMID: 9962049

AUTHOR UNKNOWN, 0
Thermalization and its mechanism for generic isolated quantum systems.
Rigol M, Dunjko V, Olshanii M., Nature 452(7189), 2008
PMID: 18421349

AUTHOR UNKNOWN, 0
Alternatives to eigenstate thermalization.
Rigol M, Srednicki M., Phys. Rev. Lett. 108(11), 2012
PMID: 22540449
Necessity of Eigenstate Thermalization.
De Palma G, Serafini A, Giovannetti V, Cramer M., Phys. Rev. Lett. 115(22), 2015
PMID: 26650281

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Dynamical typicality of quantum expectation values.
Bartsch C, Gemmer J., Phys. Rev. Lett. 102(11), 2009
PMID: 19392176

AUTHOR UNKNOWN, 0
Effect of rare fluctuations on the thermalization of isolated quantum systems.
Biroli G, Kollath C, Lauchli AM., Phys. Rev. Lett. 105(25), 2010
PMID: 21231563
Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas.
Ikeda TN, Watanabe Y, Ueda M., Phys Rev E Stat Nonlin Soft Matter Phys 87(1), 2013
PMID: 23410301
Finite-size scaling of eigenstate thermalization.
Beugeling W, Moessner R, Haque M., Phys Rev E Stat Nonlin Soft Matter Phys 89(4), 2014
PMID: 24827198
Fluctuation Theorem for Many-Body Pure Quantum States.
Iyoda E, Kaneko K, Sagawa T., Phys. Rev. Lett. 119(10), 2017
PMID: 28949188
Numerical Large Deviation Analysis of the Eigenstate Thermalization Hypothesis.
Yoshizawa T, Iyoda E, Sagawa T., Phys. Rev. Lett. 120(20), 2018
PMID: 29864329

AUTHOR UNKNOWN, 0

Voros, Ann. Inst. Henri Poincaré 26(), 1977

Shnirel’man, Usp. Mat. Nauk 29(), 1974

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Generalization of von Neumann's Approach to Thermalization.
Reimann P., Phys. Rev. Lett. 115(1), 2015
PMID: 26182084
Atypicality of Most Few-Body Observables.
Hamazaki R, Ueda M., Phys. Rev. Lett. 120(8), 2018
PMID: 29543032

AUTHOR UNKNOWN, 0
Quantum mechanical evolution towards thermal equilibrium.
Linden N, Popescu S, Short AJ, Winter A., Phys Rev E Stat Nonlin Soft Matter Phys 79(6 Pt 1), 2009
PMID: 19658469

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems.
Steinigeweg R, Khodja A, Niemeyer H, Gogolin C, Gemmer J., Phys. Rev. Lett. 112(13), 2014
PMID: 24745395

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29932722
PubMed | Europe PMC

Suchen in

Google Scholar