Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes

Krüger T, Weiland S, Falck G, Gerlach M, Boschanski M, Alam S, Müller K, Dierks T, Sewald N (2018)
Angewandte Chemie International Edition 57(24): 7245-7249.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Formylglycine-generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site-specific oxidation of a cysteine residue to the aldehyde-containing amino acid C-formylglycine (FGly). This non-canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine-generating enzyme (FGE) and the iron-sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.
Stichworte
bioconjugation; enzyme catalysis; formylglycine; peptides; radical-SAM; enzymes
Erscheinungsjahr
2018
Zeitschriftentitel
Angewandte Chemie International Edition
Band
57
Ausgabe
24
Seite(n)
7245-7249
ISSN
1433-7851
eISSN
1521-3773
Page URI
https://pub.uni-bielefeld.de/record/2920942

Zitieren

Krüger T, Weiland S, Falck G, et al. Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angewandte Chemie International Edition. 2018;57(24):7245-7249.
Krüger, T., Weiland, S., Falck, G., Gerlach, M., Boschanski, M., Alam, S., Müller, K., et al. (2018). Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angewandte Chemie International Edition, 57(24), 7245-7249. https://doi.org/10.1002/anie.201803183
Krüger, Tobias, Weiland, Stefanie, Falck, Georg, Gerlach, Marcus, Boschanski, Mareile, Alam, Sarfaraz, Müller, Kristian, Dierks, Thomas, and Sewald, Norbert. 2018. “Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes”. Angewandte Chemie International Edition 57 (24): 7245-7249.
Krüger, T., Weiland, S., Falck, G., Gerlach, M., Boschanski, M., Alam, S., Müller, K., Dierks, T., and Sewald, N. (2018). Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angewandte Chemie International Edition 57, 7245-7249.
Krüger, T., et al., 2018. Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angewandte Chemie International Edition, 57(24), p 7245-7249.
T. Krüger, et al., “Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes”, Angewandte Chemie International Edition, vol. 57, 2018, pp. 7245-7249.
Krüger, T., Weiland, S., Falck, G., Gerlach, M., Boschanski, M., Alam, S., Müller, K., Dierks, T., Sewald, N.: Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes. Angewandte Chemie International Edition. 57, 7245-7249 (2018).
Krüger, Tobias, Weiland, Stefanie, Falck, Georg, Gerlach, Marcus, Boschanski, Mareile, Alam, Sarfaraz, Müller, Kristian, Dierks, Thomas, and Sewald, Norbert. “Two-fold Bioorthogonal Derivatization by Different Formylglycine-Generating Enzymes”. Angewandte Chemie International Edition 57.24 (2018): 7245-7249.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

51 References

Daten bereitgestellt von Europe PubMed Central.


Holder, 2016
A general approach to site-specific antibody drug conjugates.
Tian F, Lu Y, Manibusan A, Sellers A, Tran H, Sun Y, Phuong T, Barnett R, Hehli B, Song F, DeGuzman MJ, Ensari S, Pinkstaff JK, Sullivan LM, Biroc SL, Cho H, Schultz PG, DiJoseph J, Dougher M, Ma D, Dushin R, Leal M, Tchistiakova L, Feyfant E, Gerber HP, Sapra P., Proc. Natl. Acad. Sci. U.S.A. 111(5), 2014
PMID: 24443552
Expanding the genetic code for biological studies.
Wang Q, Parrish AR, Wang L., Chem. Biol. 16(3), 2009
PMID: 19318213
Introducing genetically encoded aldehydes into proteins.
Carrico IS, Carlson BL, Bertozzi CR., Nat. Chem. Biol. 3(6), 2007
PMID: 17450134
Protein ligation in living cells using sortase.
Strijbis K, Spooner E, Ploegh HL., Traffic 13(6), 2012
PMID: 22348280
Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase.
Schumacher D, Helma J, Mann FA, Pichler G, Natale F, Krause E, Cardoso MC, Hackenberger CP, Leonhardt H., Angew. Chem. Int. Ed. Engl. 54(46), 2015
PMID: 26404067

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag.
Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR., Proc. Natl. Acad. Sci. U.S.A. 106(9), 2009
PMID: 19202059
Orthogonal Cysteine Protection Enables Homogeneous Multi-Drug Antibody-Drug Conjugates.
Levengood MR, Zhang X, Hunter JH, Emmerton KK, Miyamoto JB, Lewis TS, Senter PD., Angew. Chem. Int. Ed. Engl. 56(3), 2016
PMID: 27966822

AUTHOR UNKNOWN, Angew. Chem. 129(), 2017
Locked by Design: A Conformationally Constrained Transglutaminase Tag Enables Efficient Site-Specific Conjugation.
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UA, Avrutina O, Scrima A, Fuchsbauer HL, Kolmar H., Angew. Chem. Int. Ed. Engl. 54(45), 2015
PMID: 26367875

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
Dual, Site-Specific Modification of Antibodies by Using Solid-Phase Immobilized Microbial Transglutaminase.
Spycher PR, Amann CA, Wehrmuller JE, Hurwitz DR, Kreis O, Messmer D, Ritler A, Kuchler A, Blanc A, Behe M, Walde P, Schibli R., Chembiochem 18(19), 2017
PMID: 28771896
A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.
von Figura K, Schmidt B, Selmer T, Dierks T., Bioessays 20(6), 1998
PMID: 9699462
Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.
Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K., Cell 113(4), 2003
PMID: 12757705
Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K., EMBO J. 18(8), 1999
PMID: 10205163
Copper is a Cofactor of the Formylglycine-Generating Enzyme.
Knop M, Dang TQ, Jeschke G, Seebeck FP., Chembiochem 18(2), 2016
PMID: 27862795
Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme.
Meury M, Knop M, Seebeck FP., Angew. Chem. Int. Ed. Engl. 56(28), 2017
PMID: 28544744

AUTHOR UNKNOWN, Angew. Chem. 129(), 2017
Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
Holder PG, Jones LC, Drake PM, Barfield RM, Banas S, de Hart GW, Baker J, Rabuka D., J. Biol. Chem. 290(25), 2015
PMID: 25931126
Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.
Peng J, Alam S, Radhakrishnan K, Mariappan M, Rudolph MG, May C, Dierks T, von Figura K, Schmidt B., FEBS J. 282(17), 2015
PMID: 26077311
In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters.
Grove TL, Lee KH, St Clair J, Krebs C, Booker SJ., Biochemistry 47(28), 2008
PMID: 18558715
Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.
Grove TL, Ahlum JH, Qin RM, Lanz ND, Radle MI, Krebs C, Booker SJ., Biochemistry 52(17), 2013
PMID: 23477283
Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., J. Biol. Chem. 283(26), 2008
PMID: 18408004
A new type of bacterial sulfatase reveals a novel maturation pathway in prokaryotes.
Berteau O, Guillot A, Benjdia A, Rabot S., J. Biol. Chem. 281(32), 2006
PMID: 16766528
X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification.
Goldman PJ, Grove TL, Sites LA, McLaughlin MI, Booker SJ, Drennan CL., Proc. Natl. Acad. Sci. U.S.A. 110(21), 2013
PMID: 23650368
The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
Szameit C, Miech C, Balleininger M, Schmidt B, von Figura K, Dierks T., J. Biol. Chem. 274(22), 1999
PMID: 10336424
Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
Miech C, Dierks T, Selmer T, von Figura K, Schmidt B., J. Biol. Chem. 273(9), 1998
PMID: 9478923

Sungkeeree, Process Biochem. 63(), 2017
Site-Specific Tandem Knoevenagel Condensation-Michael Addition To Generate Antibody-Drug Conjugates.
Kudirka RA, Barfield RM, McFarland JM, Drake PM, Carlson A, Banas S, Zmolek W, Garofalo AW, Rabuka D., ACS Med Chem Lett 7(11), 2016
PMID: 27882197
Generating aldehyde-tagged antibodies with high titers and high formylglycine yields by supplementing culture media with copper(II).
York D, Baker J, Holder PG, Jones LC, Drake PM, Barfield RM, Bleck GT, Rabuka D., BMC Biotechnol. 16(), 2016
PMID: 26911368
Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates.
Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, Jones LC, Rabuka D., Bioconjug. Chem. 24(6), 2013
PMID: 23731037
Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation.
Kudirka R, Barfield RM, McFarland J, Albers AE, de Hart GW, Drake PM, Holder PG, Banas S, Jones LC, Garofalo AW, Rabuka D., Chem. Biol. 22(2), 2015
PMID: 25619935
Anaerobic sulfatase-maturating enzyme--a mechanistic link with glycyl radical-activating enzymes?
Benjdia A, Subramanian S, Leprince J, Vaudry H, Johnson MK, Berteau O., FEBS J. 277(8), 2010
PMID: 20218986
Function and structure of a prokaryotic formylglycine-generating enzyme.
Carlson BL, Ballister ER, Skordalakes E, King DS, Breidenbach MA, Gilmore SA, Berger JM, Bertozzi CR., J. Biol. Chem. 283(29), 2008
PMID: 18390551
Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display.
Steiner D, Forrer P, Pluckthun A., J. Mol. Biol. 382(5), 2008
PMID: 18706916
Designed ankyrin repeat proteins (DARPins) from research to therapy.
Tamaskovic R, Simon M, Stefan N, Schwill M, Pluckthun A., Meth. Enzymol. 503(), 2012
PMID: 22230567
Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size.
Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R, Nagy-Davidescu G, Dreier B, Schibli R, Binz HK, Waibel R, Pluckthun A., Cancer Res. 70(4), 2010
PMID: 20124480
Pegylated Trastuzumab Fragments Acquire an Increased in Vivo Stability but Show a Largely Reduced Affinity for the Target Antigen.
Selis F, Foca G, Sandomenico A, Marra C, Di Mauro C, Saccani Jotti G, Scaramuzza S, Politano A, Sanna R, Ruvo M, Tonon G., Int J Mol Sci 17(4), 2016
PMID: 27043557
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29579347
PubMed | Europe PMC

Suchen in

Google Scholar